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Abstract: Mycotoxins contaminations in feedstuffs are one of the principal concerns worldwide nowadays, related to the fact that they may
evoke health problems in animals and consequently in humans. Biodetoxification of mycotoxins by application of beneficial microorganisms
(lactic acid bacteria or yeasts) is one of the well-known, relatively low-cost, easy, efficient, safe, and green approaches for the reduction
of mycotoxins presence in feeds. The use of beneficial microorganisms as feed additives to remove mycotoxins is widely practiced in
the industrial production of animal feed. In this overview, we aim to summarize the great potential of beneficial microorganisms as
bio-detoxificant, including a summary of various reported detoxification activities of lactic acid bacteria or yeasts against mycotoxins with
relevance for feedstuff. The principal focus is the detoxification of mycotoxins in livestock, poultry, and aquatic feed using beneficial
microorganisms. The mechanisms of the detoxification process and effective factors in this process are also covered. This review article could
be useful for biotechnologists, investigators, and animal feed manufacturers who have challenges regarding the existence of mycotoxins in
feed, and help them to find the best method for feed bio-decontamination.
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1 Introduction

The contamination of animal feed commodities with different
mycotoxins has always been considered as a worldwide prob-
lem but has become in strong focus in recent years related to
increasing evidence of the relevance of the intoxication not
only for the animals but also for possible transmission via
the food chain to humans (Liu et al., 2022). In general, my-
cotoxins are metabolites produced by several fungal species,
known as toxins with strong effects on humans and other
animals, and are considered as a concern by the health au-
thorities associated with their strong toxicity, mutagenic and
carcinogenic properties, in addition to other adverse effects
(Zoghi et al., 2014).

The concentrations of mycotoxins in primary feed ma-
terials, such as corn, grass, or clover normally need to be
present below suggested by controlling authorities, while
they will be processed into feed products, since these metabo-
lites generally are not affected by exposure to high and low
temperatures processing, and not subject to natural degrada-

tion, even after a long storage period (Kosicki et al., 2016).
According to a global survey reported by Gruber-Dorninger
et al. (2019), practically 90% of produced feed commodities
and especially primary feed materials produced worldwide
were detected to be contaminated with at least one type of
mycotoxin, evidence of the contaminations with mycotoxin-
producing molds at some stage of production or storage.
Moreover, contaminations with multiple mycotoxins were
found in 64% of these samples. It is evident, that some en-
vironmental conditions during storage time may stimulate
growth and toxin production by fungi, including the temper-
ature of 25-30◦C and moisture of grains (16-30%, w/w), as
well as humidity of gas phase (80-100%, v/v). Taking into
consideration that usually, the content of mycotoxins may
not decrease during the preparation of feed, transforming the
problem even more relevant (Kosicki et al., 2016; 2019).

Different methods have been suggested and applied for
the removal of mycotoxin, such as physical methods (wash-
ing, heat treatment, irradiation, and using adsorbents, such as
activated carbon and clay) (Vila-Donat et al., 2018) and chem-
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icals (ammonia and ozone) (Conte et al., 2020). However, all
of these procedures have their own proper limitations, such as
leaving chemical residues and reducing the nutritional quality
and organoleptic properties of feed. Biodetoxification has
been introduced as a highly specific, effective, and successful
approach, which is also considered as safe for humans and
other animals, and environmentally friendly; been considered
as part of the “green technologies” (Śliżewska et al., 2016;
Zhu et al., 2017). Some special microbial species with the
potential for biodetoxification needed to as well safe for ap-
plication in feed products, to belong to GRAS species, with
no undesirable side effects should be considered, as part of
the concept “Safety is Priority” (Tan et al., 2014).

Among all applicable microorganisms, LAB and other mi-
croorganisms with probiotic properties are preferred for this
purpose besides other beneficial aspects for animal health and
productivity due to stimulating the immune system and mod-
ulating gut microbiota (Wang et al., 2019; Nasrollahzadeh et
al., 2022). Most of the LAB are considered as nonpathogenic
and nontoxigenic and several of them were characterized as
probiotics. Moreover, the mentioned microorganisms can be
involved in the production of hydrolytic enzymes for decom-
posing different carbohydrates (specially saccharose and mal-
tose) and can be involved in increasing the activity of the spe-
cific enzymatic systems (Śliżewska and Piotrowska, 2014).
The most applicable genera of probiotic yeasts with biodetox-
ification properties were S. cerevisiae and S. boulardii, while
effective LAB genera belong to Lactobacillus (re-classified
in different Genera since April 2020 (Zheng et al., 2020)),
Bifidobacterium, Streptococcus, Lactococcus, Bacillus, and
Enterococcus (Perczak et al., 2018). Biodetoxification of feed
products by different microorganisms with probiotic prop-
erties was reported for some mycotoxins, including OTA,
AFB1, ZEA, FB1, FB2, and DON (Deepthi et al., 2016;
Moretti et al., 2018; 2019; 2020; Ragoubi et al., 2021). In
general, the aim of this review is to present the role of LAB

and yeast as beneficial organisms involved in the reduction
and/or inactivation of mycotoxins in feedstuff.

2 Mycotoxins in Feedstuff

The most prevalent mycotoxins found in feed were reported
to be AFs, OTA, trichothecenes including DON and T-2 toxin,
as well as ZEA and fumonisins (Liew and Mohd-Redzwan,
2018; Ben Hassouna et al., 2022). A schematic representation
of the presence of mycotoxins in feedstuff is demonstrated in
Figure 1. In the European Union surveys, the most frequently
reported mycotoxins in feed were AFB1 (> 98%), DON (∼
90%), and ZEA (70%) (Streit et al., 2012). AFs have a wide
range of biological effects on different animals and clearly
lead to serious intoxications. The guidance value for the
presence of AFs in feedstuff (at 12% moisture) is 0.005-0.05
mg/kg (Chlebicz and Śliżewska, 2020; Abraham et al., 2022).
Moreover, was reported that AFs have half-maximal lethal
dose values varying from about 0.3 mg/kg of BW in rabbits
to around 18 mg/kg of BW reported in rats (FDA, 2016).

The toxic doses and defenselessness of AFs depend on the
dose and duration of exposure, species, gender, physiolog-
ical conditions, nutritional status, and age. Levels of AFs
have been recorded in domestic (including cattle, buffaloes,
camels, horses, sheep, goats, dogs, and pigs) and wild an-
imals (deer and Rhesus monkeys) (Iqbal et al., 2019) and
various toxic effects of AFs in animals have been reported
(Olinda et al., 2016).

The molds can grow in soil, cross-contaminate different
food and feed commodities, and reach humans and other
animals. Animals fed with contaminated feed can cumulate
the AFs and pass the mycotoxin via eggs, milk products, and
meat to humans (Fratamico et al., 2008). AFs can be partic-
ularly toxic for children and shown to be related to stunted
growth, delayed physical and intellectual development, and

Figure 1. Schematic representation of the presence of mycotoxins in feedstuff.
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damage to the liver, including to be associated with liver can-
cer (Abbas, 2005). Adults normally have a better tolerance
to exposure to AFs; however, even thus, their health status
can be compromised. In general, all animal species can be
considered susceptible to the effect of AFs (Hudler, 1998).

OTA is predominantly found in cereal grains, legumes,
and oilseeds as well as in the tissue and organs of ani-
mals, most probably cumulated after a feed with mycotoxin-
contaminated sources. Several toxicological effects of OTA
were also described (Śliżewska and Piotrowska, 2014). The
guidance value in feedstuff (with 12% moisture) for OTA is
0.05-0.25 mg/kg (Chlebicz and Śliżewska, 2020). The toxin
was recorded posteriorly in the histological material of tissues
and organs of different animals, and even in human blood
and breast milk (Clark and Snedeker, 2006). Was shown that
OTA can be associated with carcinogenic, neurotoxicity, im-
munosuppression, immunotoxicity, and nephropathies health
consequences not only for humans but for different domestic
and wild animals (O’Brien and Dietrich, 2005).

ZEA production occurs in geographical regions with hu-
mid and warm climates in the preharvest stage in comparison
to the storage period. It can disrupt the estrous cycles in
animals (Kowalska et al., 2016). Swine is the most vulner-
able animal to ZEA even at 1 ppm contamination of diet
(Chaytor et al., 2011). The guidance value of ZEA in feed
(12% w/w moisture) is 0.1-3 mg/kg (Chlebicz and Śliżewska,
2020). ZEA has been detected at 120 µg/L (49% from 1,820
samples in China), 104 µg/L (45% from 5,402 samples in
Australia), and 87 µg/L (40% from 1,402 samples in Japan)
(Rodrigues and Naehrer, 2012). ZEA is a mycotoxin, that
interacts with receptors associated with estrogen and causes
infertility, including abortion, especially in swine farming
(Ropejko and Twarużek, 2021). Moreover, the toxic mode of
action of ZEA is associated with a combination with deoxyni-
valenol in soiled samples, and often its toxicity is increased
when combined with other toxins (Peillod et al., 2021). One
of the major problems is that ZEA, as well some several other
mycotoxins, is resistant to the effect of high-temperature
treatments (Massoud and Zoghi, 2022; Prossnitz and Barton,
2014).

Among 4 types of Trichothecenes (Haque et al., 2020),
DON is the major toxin synthesized by Fusarium commonly
detected in grains and cereals. Several toxic effects are re-
ported due to acute exposure to high doses of DON. Pigs are
the most sensitive animals to exposure through their cereal-
rich diet (Pinton and Oswald, 2014). T-2 is the most acutely
toxic type among the 4 categories of trichothecenes in ani-
mals, anyway, vulnerability depends on animal species, es-
pecially in dairy cows (Haque et al., 2020). The guidance
values in feedstuff (12% moisture) for T-2/HT-2 and DON
are 0.25-2.0 and 0.9-12.0 mg/kg, respectively (Chlebicz and
Śliżewska, 2020).

Fusarium verticillioides and Fusarium proliferatum can
synthesize fumonisins by growth on maize-based feeds. The
toxicity of fumonisins to animals is due to the collapse of

sphingolipid metabolism (Haque et al., 2020), as well as
hepatotoxic, nephrotoxic, and immunosuppressing effects,
especially in poultry and rats (Deepthi et al., 2016). Several
toxicologic effects are reported resulting from the contami-
nation of fumonisins in horses and pigs (Ashiq, 2014). The
guidance value in feedstuff (12% moisture) for FB1 and FB2

is 5.0-60 mg/kg (Chlebicz and Śliżewska, 2020).

3 Factors Influencing the
Detoxification Ability of LAB and
Yeast

Mycotoxin removal by LAB and other microorganisms de-
pends on different variables, including pH, incubation tem-
perature and time, specificity of bacterial strain, inoculum,
and initial mycotoxin concentration (Zoghi et al., 2021b).
Chlebicz and Slizewska (2020) reported the biodetoxification
ability of strains belonging to L. brevis, L. casei, L. paraca-
sei, L. plantarum, L. reuteri, L. rhamnosus, and S. cerevisiae
to FB1 and FB2. The range of bio removal efficiency var-
ied from 62 to 77% and 67 to 74% for bacterial and yeast
strains. After 24 h of incubation, the content of DON removal
reached 19-39% when Lactobacillus sp. strains and 22-43%
when S. cerevisiae was applied, respectively. The concentra-
tion of T-2 toxin, AFB1, and ZEA was also reduced by 61%,
60%, and 57% by different Lactobacillus spp., correspond-
ingly, and 69%, 65%, and 52% by S. cerevisiae, correspond-
ingly. However, L. rhamnosus was the most effective LAB
for the bio-removal of ZEA, DON, AFB1, and fumonisins
(Chlebicz and Śliżewska, 2020). Therefore, it is clear that
the detoxification capacity of LAB was revealed to be strictly
strain-specific.

Muaz et al. (2021) suggested and confirmed that detoxifi-
cation needs to be regarded as a fast process and attachments
between cells and mycotoxins normally occur in a few min-
utes. A similar was reported by Zhao et al. (2016), who
reported that fumonisins can attach to lactobacilli quickly
and normally occur in the 1 h of interactions between myco-
toxin and bacterial cells. Moreover, Pizzolitto et al. (2012)
pointed out that the process can be almost immediate, and
binding even after 1 minute of interaction between bacterial
cells and mycotoxins can be fact. Usually, it is shown that the
mycotoxins adsorption process by LAB and yeast is quick
and begins immediately after their direct contact (Zoghi et
al., 2017).

It was suggested that pH can be considered as one of the
important influencing factors in mycotoxin removal by LAB
and yeast. Hsu et al. (2018) evaluated the role of Bacillus
licheniformis in the removal of ZEA and pointed out that
pH increases from 2.5- 6.0, enhancing the bio-removal of
the mycotoxin. Moreover, Guo et al. (2018) showed that
pH increasing from 3.0 to 5.0 can influence the increase
in adsorption of OTA, ZEA, and AFB 1 in the presence of
kefir-isolated bacteria consortium by 94%, 100%, and 82%,
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respectively. On the opposite, Tiziri et al. (2023) stated that
the removal ability of viable LAB cells increased with a de-
crease in pH from 6 to 5. Furthermore, Bovo et al. (2014)
reported no significant difference in AFB1 reduction efficacy
when a strain of L. rhamnosus was applied to two different
pH values (3.0 and 6.0). In another study, the highest and
lowest AFB1 elimination by LAB was detected at pH 8.0 and
4.4, respectively (Rayes, 2013). In the different experimen-
tal study was claimed that mycotoxins reduction by some
specific probiotics can be pH-dependent and more efficient
removal processes were recorded at pH values near neutral
(Elsanhoty et al., 2016). These different reports could be due
to the difference between strains, detoxification conditions,
and mycotoxin type.

The LAB role in the detoxification processes is clearly
related to the concentration of the mycotoxin (Zoghi et al.,
2017), most probably depending on the ability of the mi-
crobial cells to adsorb or metabolize mycotoxin can play a
limiting factor in the efficacy of the processes. Armando et
al. (2013) reported increasing binding ability of S. cerevisiae
RC016 from 27%, 43%, 68%, and 79.6% followed by in-
creasing mycotoxin of FB1 concentration at 1, 5, 20, and 50
µg/ml, respectively.

3.1 Effect of LAB pretreatment on
detoxification

Was suggested that pretreating LABs can influence the my-
cotoxin detoxification process (Zoghi et al., 2021a). As part
of the applied approach, denaturation of proteins can occur
and result in the alteration in charge distribution, specific
changes in the hydrophobic surface re-arrangement in bac-
terial surface, and therefore as well influence and improve
the mycotoxins adsorption (Zoghi et al., 2021b). The struc-
ture of the cell wall in Bacillus and Lactobacillus includes
teichoic acids, and peptidoglycans, with the inclusion of spe-
cific polysaccharides and proteins. The specific structure
and thickness of the cell wall can be reduced and as a conse-
quence, their pore size may enhance when cells are exposed
to acid and/or heat treatments. Moreover, some of the amide
bindings in the structure of the peptidoglycans can be broken
as a consequence of the effect of the acid. Even, some of
the glycosidic links in polysaccharides can be affected by
Maillard reactions (among peptides and polysaccharides as a
consequence of the heat treatments). Also, proteins can be
simply denatured by acid and/or heat treatments (Tinyiro et
al., 2011).

The adsorption abilities of the LABs may change by pre-
treatment with heat due to possible changes in the peptidogly-
can structure, including an increase of the porosity and break
of existing glycosidic links between polysaccharides (Lee et
al., 2017). It has already shown that the high-temperature
pretreatment may involve the development of binding sites
via specific hydrophobic bindings with mycotoxins (Teodor-
owicz et al., 2017).

The adsorption abilities of the LABs are also influenced
by changes in the pH and acid treatments, associated with
an increase in porosity, which may influence the thickness
of the cell wall peptidoglycan, and break the amide bonds in
the peptidoglycans (Lee et al., 2017). The acid pretreatment
of bacteria can have an effect on the decrease of the cell wall
specific thickness and enhances the size as the monomers,
released from proteins and amide and glycosidic linkages
in peptides and polysaccharides break (Zou et al., 2012).
However, acid pretreatment of Bacillus leads to a significant
decrease in ZEA absorption in comparison to untreated cells,
implying that low pH sites are most probably unfavorable
for the microbial degradation and adsorption of ZEA by that
specific Bacillus strain (Wang et al., 2017).

LABs and some other probiotics by applying alkaline pre-
treatments are able to reduce and even eliminate the coating
compounds present on the bacterial surface and in this way
involved in the change of the availability of the binding sites.
As a consequence, the acidic groups most probably will be
neutralized and this will affect the whole cell’s, surface elec-
tronegativity (Wang et al., 2015). The ability of the bacterial
cells to increase their binding capacity after the cell wall’s
degradation was shown to be associated with the improve-
ment of viability of the peptidoglycans amount (Zoghi et al.,
2021a).

4 Detoxification of Mycotoxins in Feed
by LAB and Yeast

Table 1 shows some LAB and yeast species recently used for
mycotoxins detoxification from feedstuffs (2012 onwards).

4.1 Livestock feed

Sources of contamination of livestock with mycotoxin are
normally cereals, oilseeds, leguminous seeds, as well as in-
dustrial and crop by-products (Coppock et al., 2018). A
strain of E. faecium, recovered from the feces of healthy
dogs has been shown to reduce the levels of AFB1 in feed.
These strains were suggested to be applied as promising pet
feed additives for aflatoxin detoxification (Fernandez Juri et
al., 2014). For strain of S. cerevisiae CECT 1891 was also
shown to have the ability to adsorb aflatoxin into its cell wall
components. Moreover, that particular strain of S. cerevisiae
was shown as well to be resistant to salivary and gastrointesti-
nal environmental conditions, making him a good probiotic
candidate (Pizzolitto et al., 2012). These benefits may in-
crease the possibility of its use as a feed additive for livestock
with mycotoxin-reducing properties. Watanakij et al. (2020)
reported on the use of extracellular fraction obtained from
Bacillus subtilis BCC42005 as a soaking agent for maize
with the aim of reduction of aflatoxins and the results showed
a reduction of AFB1 after 120 min contact time. Therefore,
specific strains of LAB and yeast, as feed additives, are ef-
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Table 1. Several LABs and yeasts applied for feed detoxification (recent 11 years)

Species Mycotoxin Feed
Microorganism

concentration (CFU/ml)
Initial toxin

concentration
Toxin

removal
Experimental

condition
Mechanism of
detoxification References

Berevibacillus laterosporus AFB1 Quails feed 1.5×1010 5 µg/ml 57.30% 37 °C for 4 h Adsorption Bagherzadeh Kasmani et al., 2012

L. gallinarum  PL 149 AFB1 Poultry feed 108 100 ng/ml 65% 37°C for 2 h Adsorption Azeem et al., 2019

Bacillus Megaterium, Bacillus
amyloliquefaciens, Bacillus

subtilis
AFB1 Poultry feed 109 750 µg/L 47% 37 °C Biotransformation into

less toxic products
Galarza-Seeber et al., 2015

L. plantarum  CIDCA 83114 AFB1 Poultry feed 1–2 ×108 500 µg/L 90%
freeze-dried

bacteria-zeolite
mixture

Adsorption into the
bacterial cell wall

Moretti et al., 2018

L. acidophilus  ATCC 20552,
B. angulatum  DSMZ 20098

AFB1 Water 109 8.9 - 21.6%
22 or 37°C for 5

min to 24 h
Detailed data
unavailable Elsanhoty et al., 2016

S. cerevisiae AFB1
Corn for mice

feed
6 weeks incubation

period
Detailed data
unavailable Motameny et al., 2012

Bacillus velezensis DY3108 AFB1 Maize grain 108 500 µg/L 91.50% 80 °C for 24 h
Biotransformation into

less toxic products Shu et al., 2018

Bacillus shackletonii L7 AFB1 Liquid feed 100 µg/L 92.10% 37 °C for 72 h
Biotransformation into

less toxic products Xu et al., 2017
Bacillus subtilis, Bacillus

licheniformis, Bacillus
pumilus

AFB1, OTA Shrimp feed 5×1010 1.000 ng/ml > 50% pH 2, 6
Adsorption into the
bacterial cell wall Calvet et al., 2020

AFB1 76%

OTA 70%

AFB1 1.0 mg/ml 78%

ZEA 2.0 μg/ml 82%

L. rhamnosus  CECT 278 T OTA MRS broth 108 0.6 μg/ml 97% 37 °C for 24 h Enzymatic degradation Luz et al., 2018

Bacillus subtilis ZEA Maize 105 to 106 5 mg/kg 56% 37°C for 24 h Degradation Chen et al., 2019

Bacillus subtilis ANSB01G ZEA Complete pig
feed

500 ng/ml 5 μg/ml 83.00% 37 °C for 48 h in
the dark

Degradation Lei et al., 2014

Bacillus amyloliquefaciens  LN ZEA Corn meal
medium

1010 5 μg/ml 92% 37°C for 24 h Adsorption into the
bacterial cell wall

Lee et al., 2017

Bacillus licheniformis  CK1 ZEA Corn meal
medium

108 5 µg/ml 73.00% 37°C, pH 7.0 Adsorption into the
bacterial cell wall

Hsu et al., 2018

55.30%

47.40%

57.00%

ZEA 23%

DON 30%

L. paracasei  LHZ-1 DON Liquid culture 50 μg/mL 40.70%
Adsorption into the
bacterial cell wall Zhai et al., 2019

Bacillus subtilis ASAG 216 DON
Luria–Bertani

medium 109 100 μg/mL 81.10% 37°C for 48 h
Detailed data
unavailable Jia et al., 2021

DON 22–43%
FB1, FB2 67–74%

AFB1 65%

ZEA 52%

T-2 toxin 69%

L. plantarum  MYS6 FB1
Maize-based

feeds 106 10 µg/mL 61.70%
37°C for 2 and 4 h.;

pH 7.4
Adsorption into the
bacterial cell wall Deepthi et al., 2016

Bacterial consortium SAAS79 FB1
Cereal-based

feeds
108 10 μg/mL >90% 28-35 °C for 24 h.;

pH 5-7

Enzymatic
transformation into low-

toxicity metabolites
Zhao et al., 2019

FB1

FB2

Lentilactobacillus buchneri, L.
gasseri AFs rye silage 1.25×1011 CFU/g 13.49 µg/kg 16.75% 30 °C for 24 h

Adsorption into the
bacterial cell wall Juráček et al., 2022

AFB1

FB1

L. buchneri, L. lactis, L.
plantarum, L. lactis ZEA Corn silage 250,000 CFU/g 40–60% 25°C for 30 days Adsorption Gallo et al., 2022

Tiziri et al., 2023

Møller et al., 2021

Rogowska et al., 2019

Ragoubi et al., 2021

Chlebicz and Śliżewska, 2020

Binding to the bacterial
cell wall

Adsorption into the
bacterial cell wall

Adsorption and
degradation

Degradation

Adsorption into the
bacterial cell wall

Dawlal et al., 201980%

73.7 to
99.7%

37 °C for 72 h Nazareth et al., 2020

Adsorption

Adsorption into the
bacterial cell wall

25 °C for 24 h pH 6

37 °C for 20 min

37 °C for 24 h

37°C for 48 h

37 or 30 °C for 24 h

37°C for 24 h

18 × 108

105 to 106

108

1013

40 ng/mL

2 μg/ml

100μg/mL

125 μg/ml

107

Wheat

Potassium
phosphate

buffer

Aqueous
solution

Liquid feed

PBS solution

Maize based
Fermented

cereals

Corn kernels
and corn ears

1010

109

S. cerevisiae £OCK 0119

L. plantarum  FS2, L.
delbrueckii  subsp. delbrueckii

CIP 57.8T Pediococcus
pentosaceus  D39

L. plantarum  CECT 749 CFS

ZEA

L. plantarum R1096

L. plantarum  1QB147
L. plantarum  3QB361

L. paracasei, Lc. lactis, S.
cerevisiae

L. acidophilus  CIP 76.13T, L.
delbrueckii  subsp. Bulgaricus

CIP 101027T

Abbreviations: Lactobacillus: L.; Saccharomyces: S.; Bifidobacterium: B.; Lactococcus: Lc.; Zearalenone: ZEA; Aflatoxin B1: AFB1; Trichothecene-2
toxin: T-2 toxin; Deoxynivalenol: DON; Ochratoxin A: OTA; Fumonisin B1 and B2: FB1 and FB2.
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fective in the adsorption of AFB1 from feedstuff and the
efficiency could depend on the different strains.

Bacillus subtilis ANSB01G, a strain isolated from the in-
testinal chyme of the broiler, was shown to be involved in
the reduction of ZEA (Lei et al., 2014). Moreover, Ju et
al. (2019) also reported on the elimination of ZEA by two
strains (Bacillus subtilis and Bacillus natto) after 48 h with
efficacity of 100% and 88% respectively; As well, these two
previously mentioned strains presented good ZEA degrada-
tion ability in corn flour and soy flour. During the microbial
degradation of ZEA, both estrogenic compounds, such as
α-zearalenone and β-zearalenone, and non-estrogenic com-
pounds, such as 1-(3,5-dihydroxy-phenyl)-10’-hydroxy-1’E-
undecene-6’-one, can be produced that are less toxic than
ZEA. Bacillus licheniformis CK1 was able to degrade ZEA
into non-estrogenic or less estrogenic compounds in animal
feed and even reduce the adverse effects of ZEA in the gilts
(Fu et al., 2016). Also, Bacillus velezensis A2 can also de-
grade ZEA (7.45 µg/ml) in a Luria-Bertani medium after 3
days. It could be applicable as a feed additive to decontami-
nate the feed (Wang et al., 2018a). Bacillus cereus BC7 re-
covered from moldy contaminated animal feeds has been also
reported for 100% and 89.31% bio-removal of experimen-
tally contaminated with 10 mg/L ZEA Luria-Bertani medium
or laboratory prepared simulated gastric fluid, respectively.
Bacillus cereus BC7 was shown to significantly protect the
experimental mice against the toxic effects of ZEA (Wang et
al., 2018b). Plant-derived AFB1 BCC 47723 isolated from
Thai fermented vegetable products reduced ZEA from feed-
stuff by the efficiency of 0.5-23% (Adunphatcharaphon et al.,
2021). Niderkorn et al. (2008) showed the possibility of bind-
ing of ZEA to Streptococcus thermophilus in animal feed.
They showed a 91% efficiency of binding at the beginning
which was then reduced to 67% after 18 h.

Interaction, including the ability of L. pentosus X8 and
AFB1 B7 to bind with fumonisins (FB1 and FB2), has also
been reported from the maize-based feed. Bio-removal de-
pends clearly on some environmental conditions, including
pH, as well as incubation temperature and time. Both vi-
able and dead bacteria cells were able to bind (Zhao et al.,
2016). In addition, beneficial properties for 3 strains of Pro-
pionibacterium have been reported for bio-removal of FB1

and FB2 in experimental conditions in MRS broth (pH 4.0)
(Niderkorn et al., 2006). The reported results pointed out that
the mentioned bacterial species were more effective for the
bio-removal of FB2 in comparison to FB1. Also, Niderkorn
et al. (2006) demonstrated that LAB, for comparison with
propionibacteria were unable to trap FB1 and FB2 in neutral
pH.

The high efficiency of using coculture of LAB strains
with S. cerevisiae for degradation of OTA has been also
reported. Around 31.9 to 47.7% reduction in OTA content
was observed after incubation at 30◦C or 37◦C for 24 h.
Moreover, OTA was also reduced in the soiled feed down
to 2 mg/kg, in vivo condition by a combination of LAB

and Saccharomyces species (Markowiak et al., 2019). In
another study, seven inactivated LAB strains (including AFB1

1QB147, Levilactobacillus spp. 1QB459, 3QB398, and L.
plantarum 3QB361) were able to endorse a reduction of
78% of AFB1, 90% of OTA, and 82% of ZEA, which are
abundant in cereal-based feed. It is relevant to underline, that
this specific reduction is not only strain-specific but as well
can be varied depending on the environmental pH (Møller et
al., 2021).

4.2 Poultry feed

Aflatoxicosis is one of the principles responsible for toxins
with strong negative effects and associated causing economic
problems in the poultry industry (Iqbal et al., 2019). Ducks
followed by turkeys, quails, broilers, and layers are the most
vulnerable birds affected by the AFs (Sana et al., 2019). Was
suggested and shown efficacity of Bacillus subtilis ANSB060,
strain isolates from the fish gut that can inhibit the growth
of Aspergillus flavus, moreover, be associated with degrada-
tion of AFs to less toxic compounds, and the same time can
be resistant to adverse conditions such as simulated gastric
and intestinal environments. Even more, its detoxification
effect was confirmed by in vivo experiments and showed
that in a chicken broiler fed with peanuts naturally contami-
nated with AFs; laying hens exposed to certain levels of AFs
strengthened the case for its utility as a feed additive (Ma
et al., 2012). In a different study, the positive effects of S.
cerevisiae were linked to several health-beneficial aspects
against AFB1 in poultry feeds (Zoghi et al., 2014). Śliżewska
and Smulikowska (2011) reported the impact of fermenta-
tion of feeds with probiotic bacteria and yeast strains and
positive consequences on the reduction of the content of
AFB1. The same authors reported a 55% decrease in AFB1

content (with an initial concentration of 1 mg/kg) after only
6 h fermentation with L. paracasei LOCK 0920, L. brevis
LOCK 0944, AFB1 LOCK 0945, as well as S. cerevisiae
LOCK 0140, in a broiler feed. However, the bio-removal
efficiency of AFB1 was 39% with an initial presence of 5
mg/kg, placing on the dose-dependent outcome of the efficac-
ity of probiotic cultures in bio-degradation of AFs (Śliżewska
and Smulikowska, 2011). Tiziri et al. (2023) determined the
detoxification properties of viable and heat-inactivated cells
of eleven LAB strains, isolated from Algerian fermented
foods, toward AFB1 and OTA in wheat. They claimed that
both viable and nonviable cells of all LAB strains were able
to remove AFB1 and OTA, with efficiency varying between
the strains and higher for AFB1 with nonviable cells.

Śliżewska and Piotrowska (2014) reported detoxification
of OTA from chicken feed by L. brevis LOCK 0944, L. para-
casei LOCK 0920, and AFB1 LOCK 0945 together with S.
cerevisiae LOCK 0140. The results showed a 73% reduction
in the presence of OTA (with initial levels of 1 mg/kg), after
6-hour fermentation. However, as well as in the case of AFs
previously reported by the same researchers (Śliżewska and
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Smulikowska, 2011), at higher content OTA (5 mg/kg), re-
moval efficiency dropped to 55%. Abrunhosa et al. (2014)
proposed the application of Pediococcus parvulus for the
reduction of OTA in a liquid system and reported a 90%
reduction of OTA in the first 20 h of the fermentation pro-
cesses. Moreover, the authors pointed out the link between
applied incubation temperature and the importance of the
inoculum size: different strains of Lactobacillus spp. showed
the ability for 50% bio-detoxification of OTA even after 30
min incubation at pH 6.2 (Piotrowska, 2020). Kapetanakou
et al. (2012) investigated OTA bio-detoxification by strains
belonging to L. sakei, L. casei, and Streptococcus salivarius
with the best efficacity for bio-removal (20%) recorded at pH
5.0.

Xu et al. (2016) reported on 95.7% and 62.1% decrease in
ZEA content with initial content of 3 and 1 ppm, respectively,
in wheat by Bacillus amyloliquefaciens ZDS-1. A strain of S.
cerevisiae, isolated from grapes, was shown to be involved in
degrading of ZEA rather than simply absorbing it. In the men-
tioned study, the authors applied nutrient yeast dextrose broth
as model culture media for culture and after 2 days showed
that ZEA was degraded completely into α-zearalenone and
β-zearalenone by applied yeast strain (Zhang et al., 2016).

Zou et al.(2012) evaluated the ability for bio-detoxification
properties for strains of AFB1, L. lactis, L. casei, and L. bre-
vis of DON in a fermentation process after 3 days. However,
after 2 days, bio-removal efficiency reached the maximum
while no change was observed until the 3rd day. Evalu-
ated strains of AFB1 showed the best activity for DON bio-
detoxification. L. paracasei evaluated strains were effective
on DON in detoxification processes (Zhai et al., 2019). The
binding ability for evaluated L. rhamnosus and Propioni-
bacterium freudenreichii strains has been reported for their
efficacity related to DON, HT-2, and T-2 toxins (El-Nezami
et al., 2002).

4.3 Fish and aquatic feed

LAB was shown to play an essential role in aquacultures with
proven effects on enhancing growth, disease resistance, and
feed efficiency. Fish aquacultures contribute to providing
high-quality proteins for humans and other animals and also
play important financial contributions to the communities’
growth (Jamal et al., 2019). Certain aquaculture species like
catfish, Indian common carp, tilapia, trout, sturgeon, and
shrimps are prone to aflatoxicosis (Iqbal et al., 2019). The
LAB can be added directly to the water or as feed additives.
Their ability for absorbing or degrading mycotoxins is re-
ported (Wang et al., 2017).

Elsanhoty et al. (2016) reported a higher binding ability
for L. rhamnosus to AFB1 in a liquid medium and compared
these properties to L. sanfranciscensis, L. acidophilus, and B.
angulatum. They also showed the stability of the complex of
LAB to AF. Halttunen et al. (2007) assessed the exclusion
of AFB1 from aqueous solution by L. rhamnosus LC705, L.

rhamnosus GG, B. breve Bbi99/E8, and Propionibacterium
freudenreichii subsp. shermanii JS. The most efficient re-
moval of AFB1 was observed with B. brevis Bbi by 21.4%.
Topcu et al. (2010) investigated the detoxification of AFB1

from water by E. faecium M74. This probiotic strain removed
19.3 to 30.5% of AFB1 throughout a 48-h incubation period.
The results also showed high stability of the AFB1 complexes
with the applied bacterial strains. It is important to underline
that both, live and dead cells could decrease toxin content at
almost the same rate. In another study, AFB1 and Lc. lactis
strains were able to decrease the content of AFB1 in model
solutions by 46% and 27%, respectively. Synergistic effect of
coculture by AFB1 and Lc. lactis experimental strains in bio-
detoxification processes (81%) were approved in comparison
to applying a single strain (Sezer et al., 2013).

In general, it can be concluded that choosing the appropri-
ate LAB or yeast with potential probiotic properties, aimed
for each mycotoxin removal in livestock, poultry, fish and
aquatic feed is important, though the detoxification process
is highly strain-specific. On the other hand, using LAB or
yeast with probiotic properties could be more useful, because
of their several health benefits besides their ability to myco-
toxin removal; So, they can be used as feed additives without
worrying about the side effects of utilizing these microorgan-
isms for animals. In addition, applying optimal experimental
conditions plays a major role in the decontamination process.

5 Mechanisms of Detoxification
As previously reported (Sadiq et al., 2019), the mechanism
of mycotoxin bio-detoxification is associated with biodegra-
dation and/or adsorption into the cell walls with non-covalent
bonds (in most cases Van der Waals forces) and results in the
reduction of mycotoxins bioavailability in the gastrointestinal
tract or other systems (Guan et al., 2021). It is observed that
physiologically active and/or dead bacterial or yeast cells are
able to interfere and attach the mycotoxins and, in this way,
eliminate their values. These processes were mostly con-
firmed based on evidence for cell wall adsorption, and lees
the formation of covalent bonds (Hamidi et al., 2013). My-
cotoxin degradation involves the microorganisms producing
certain metabolites including some acids, specific pheno-
lic compounds, different bioactive peptides, and fatty acids
which result in to change in mycotoxin structure and toxicity
(Theumer et al., 2018; Muhialdin et al., 2020). Proteolytic
enzymes have the main role in the degradation of mycotoxins
and change their structure (Guan et al., 2021) (See Figure
2). The main enzymes produced by LAB/yeast involved in
mycotoxin degradation in feedstuff are demonstrated in Table
2.

LABs are able to establish specific non-covalent bonds
between mycotoxins and bacterial cell surfaces (Ansari and
Rezaei, 2022). The bacterial S-layers possess different link-
ing sites responsible for the attachment to the mycotoxins by
non-covalent links (Zoghi et al., 2018). LABs are also able to
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Table 2. Produced enzymes by lactic acid bacteria and yeast involved in mycotoxin degradation in feedstuff

Enzyme LAB/yeast Mycotoxin Mechanism of degradation References

Laccase Bacillus licheniformis
ANSB821

AFB1
Through free radical

generation Guo et al., 2020

Lactonase
Bacillus subtilis RC1B,
Bacillus cereus RC1C,

Bacillus mojavensis RC3B
AFB1

Hydrolysis of the AFB1

lactone ring
González Pereyra et al., 2019

Unknown Bacillus  sp. ZEA Phosphorylation Zhu et al., 2021

Lactonohydrolase L. reuteri ZEA Hydrolysis of the ZEA
lactone ring Liu et al., 2019

Carboxy-peptidase S. cerevisiae OTA Hydrolysis of the amide bond Abrunhosa et al., 2010

Unknown Bacillus  sp. LS100 DON Reductive de-epoxidation Islam et al., 2012
3-O-acetyltransferases S. cerevisiae RW2802 DON Acetylation of DON Khatibi et al., 2011

Unknown Eubacterium BBSH 797 T-2 toxin Reductive de-epoxidation Fuchs et al., 2002

Abbreviations: Lactobacillus: L.; Saccharomyces: S.; Zearalenone: ZEA; Aflatoxin B1: AFB1; Trichothecene-2 toxin: T-2 toxin; Deoxynivalenol: DON;
Ochratoxin A: OTA.

Figure 2. Schematic representation of the mechanism of mycotoxin
bio-detoxification by lactic acid bacteria (LAB) and yeast.

synthesize specific EPS from basic carbohydrates, an impor-
tant player in the detoxification progressions of mycotoxins
(Oleksy-Sobczak et al., 2020). It was also observed that the
primary role in binding processes is the cell wall peptidogly-
can and polysaccharides part of the bacterial membrane, pre-
senting a key role in the formation of complexes and further
detoxification processes (Liu et al., 2020). Peptidoglycans,
part of the bacterial walls, and especially disaccharides are di-
rectly involved in interactions between mycotoxins and some
pentapeptide bridges. The acetyl groups of the N-acetyl-
muramic and N-acetyl-glucosamine as well can alter and
the C6 in muramic acid can be replaced by teichoic acid
(Zoghi et al., 2014). Teichoic acid is an anionic structure,
representing almost half of the cell wall’s weight. However,
needs to be mentioned, that lipoteichoic and teichoic acids
are highly similar in their structures (Khosravi Darani et al.,
2020). Moreover, was also reported on the specificity in the
variety of interaction and binding abilities for different my-
cotoxins to bacterial and yeast cells is clearly associated with
having specific variations in the cell wall structures (Zoghi et
al., 2014; Khosravi Darani et al., 2020; Zoghi et al., 2021a).
The specificity of the cell wall thickness and uniqueness of
the diameter relation represents a relation between potential

mycotoxin reduction and the present cell wall area. After
exposing the cell walls to the low pH and heat treatments, it
was observed that the cell wall thickness was connected to
removal ability in a positive way (Wang et al., 2019).

It was suggested that ZEA elimination by bacterial or yeast
cells occur normally through the following specific stages:
absorption stage - normally this is a rapid and highly efficient
strain-specific process and is followed by the second stage -
in most cases a slower process and related to ZEA diffusion
into microbial cells (Król et al., 2018). As well, previously
assessed that the ZEA elimination processes by Bacillus spp.
were not a simple adsorption process. The capacity of ZEA
exclusion by adsorption by Bacillus strains was less signif-
icant compared to the metabolization occurring by specific
secretase (Xu et al., 2016). ZEA removal by the strain of
AFB1 was suggested and associated with the changes in pro-
tein organizations of AFB1 cell wall after treatment by SDS
and when ZEA reduction was highly affected. Therefore,
the bio-removal based on the hydrophobicity interactions
was pointed as the principal mechanism in ZEA decrease
performed by AFB1 (Adunphatcharaphon et al., 2021). The
adsorption mechanism of Bacillus spp. was the same that has
been reported for Lactobacillus spp. and other Gram-positive
bacteria, due to the similarity in the cell walls. ZEA is gen-
erally adsorbed by the cell surface based on hydrophobic
interactions and the specific carbohydrates from the Lacto-
bacillus spp. cell walls (Tinyiro et al., 2011). Furthermore,
several Bacillus strains have been found capable of degrading
ZEA to ZEA-14-phosphate (Zhu et al., 2021).

Chen et al. (2019), suggested that the osteolytic activ-
ity of LAB can play a significant role in the ZEA degrada-
tion and reported on the decreased concentration of DON
and converted to 3-keto-DON or 3-epi-DON, a less toxic
derivative, in PBS as an effect of interaction with LAB and
suggested that observed results are a consequence of the
activity of some unidentified extracellular enzymes. Also,

Applied Environmental Biotechnology (2024) - Volume 9, Issue 1 69



Bio-detoxification of mycotoxin-contaminated feedstuffs: Using lactic acid bacteria and yeast

de-epoxidation of the C12,13 epoxide ring of trichothecenes
(T-2 toxin and DON) by unknown enzymes from Bacillus
sp. has been reported. The reduced toxicity of de-epoxy
derivatives of T-2 toxin and DON was stated (Abraham et al.,
2022).

Fumonisin was shown to have a propensity to attach to the
peptidoglycan in LAB cell walls. It was shown that tricar-
boxylic acid in the LAB can play a key role in this attachment
process, therefore reported that hydrolyzed fumonisin can
have a less binding affinity (Zoghi et al., 2014). Zhao et al.
(2016) as well confirmed that peptidoglycans were princi-
pal biding molecules for mycotoxins attachments and that
teichoic acid was less involved in the bindings processes.
Martinez Tuppia et al. (2017) described that the bio-removal
of FB1 was primarily associated with specific biodegradation
processes and physical adsorption. However, mycotoxin re-
moval cannot be postulated which was based on the same
processes for all strains of Lactobacillus spp. in the study.

Vosough et al. (2014) showed that the AFB1-binding abil-
ity of viable (43%), heat-killed (49%), and acid-killed L.
rhamnosus GG (50%) was not different. These results in-
dicate that AFB1 was not removed based on the metabolic
processes, but because it becomes physically bound to molec-
ular components of the probiotic, most probably part of the
cell walls. The main mechanism was the binding of LAB
to AFB1, pointing out that the AF reduction is generally
through the physical binding and the involvement of the pep-
tidoglycans in the carbohydrate forms in the bacteria cell
wall (Khosravi Darani et al., 2020). On the other hand, it
has been demonstrated that laccases and other enzymes that
depolymerize polyaromatic lignin can oxidize AFs. These en-
zymes usually need extra co-substrates or mediators, which
may restrict their usefulness for removing AFs from the feed
(Abraham et al., 2022). Recently, it was discovered that
AFB1 can be converted into the 3-hydroxy epimers, AFQ1,
and epi-AFQ1, without the use of redox mediators by the
bacterial laccase CotA from Bacillus licheniformis ANSB821
(Guo et al., 2020). The two epimers have no harmful effects
on people. It was determined that AFQ1 was 18 times less
hazardous than AFB1.

A study by Ragoubi et al. (2020) showed a higher re-
duction in OTA content in thermally inactivated probiotics
which shows the binding mechanism of biodetoxification.
Heat-treated cells showed a higher OTA adsorption in PBS
in comparison to intact cells which shows heat-induced loss
of active site of absorption in the cell wall. Also, the amide
bond of OTA can be hydrolyzed by carboxypeptidase, which
can be produced by S. cerevisiae, to form non-toxic pheny-
lalanine and ochratoxin α (Abraham et al., 2022).

6 Mycotoxin-(LAB/yeast) Complex
Stability In vitro

LAB and yeast application for the mycotoxins reduction
and removal from feedstuffs relates to as well their com-
plex stability in the GIT. Depending on the specificity of the
probiotics, some can permanently colonize the GIT, how-
ever, others can be rather characterized as transit microbiota.
Several LAB and yeast, evaluated as potential or effective
probiotics, have the ability to adhere to the cells of the GIT
with a high degree of strain-specific properties. In case of
the elimination of mycotoxins, adherence to the epithelial
cells will be considered as a significant health hazard, since
this will be keeping the mycotoxins in the host. However,
most probiotics can be characterized by a significant reduc-
tion of their adherence ability to the epithelial cells of the
GIT after binding to mycotoxins. Thus, the formed complex
between the probiotic and mycotoxin is normally rapidly
passed via the GIT and excreted (Zoghi et al., 2021a; Zoghi
et al., 2021b). Moreover, it is important that these formed
bonds would not dissociate in the GIT. The stability of the
builder complex between the probiotics and mycotoxins is
associated with several environmental parameters (Hsu et al.,
2018).

Some reports proposed that the mycotoxins’ attachment
to the cell wall of LAB and yeasts occurred via binding and
releasing. According to a recent study, the stability of the
complex of toxin-Saccharomyces is higher which indicates
forming a specific complementary structure between man-
nose on the yeast membrane and mycotoxins (Guan et al.,
2021). Zhao et al. (2015) observed that ZEA removal by
AFB1 strain can be a fact, but the process of interaction be-
tween the toxin and the bacterial cell was partially reversible.
Petruzzi et al. (2016) indicated 25% stability of the complex
of S. cerevisiae to mycotoxin in simulated digestive condi-
tions for 6 h. Pizzolitto et al. (2012) showed a 49% release
of LAB-AF bound after 5-step items of washing with PBS,
and even an increase in washing duration from 1 to 60 min,
however, does not improve the effect on percentage release.
Moreover, was shown that the binding in the complex of E.
faecium- AFB1 was a reversible process as well. The conclu-
sion was that the stability of the cells/mycotoxin complexes
depends primarily on the applied bacteria strains, a strain-
specific phenomenon (Topcu et al., 2010). Bevilacqua et al.
(2014) showed that the binding of AF -yeast was not enough
stable, and toxin was released from the complex, too. The
stability of Enterococcus-AFB1 was enough high even after
3 times of washing with PBS (Fernandez Juri et al., 2014).
It is important to mention, that all mentioned in vitro experi-
ments are positive indications for the beneficial role of LAB
and yeasts in the bio-removal of mycotoxins, however, all
of them must be cleared in vivo models as mycotoxins may
be released from the formed complexes with LAB and yeast
surface after washing and enter to animal body and potential
negative health consequences may occur.
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7 Conclusions

Different mycotoxins are produced by the fungal species and
can be present in feedstuffs which can have serious health
consequences for animals and humans. The most common
mycotoxins existing in animal feed are AFB1, DON, and
ZEA. Feed detoxification by specific beneficial microorgan-
isms is a green technology to reduce and control several
health risks. Several LABs and yeast strains are proven for
their role in the reduction and removal of mycotoxins from
feeds. As summarized, Table 1 shows some of the recent
research (2012 onwards) contributions, in which LABs and
yeasts have been used for detoxification in feedstuffs. My-
cotoxins’ binding to the yeast/LAB’s cell wall structure and
mycotoxins’ degradation are the key mechanisms by which
they are detoxified. According to previous studies, Lacto-
bacillus strains, especially AFB1 and L. paracasei, are the
most effective LAB for adsorbing AFB1 and DON in feed-
stuff, respectively. Also, Bacillus sp., particularly Bacillus
subtilis, has been found to be more effective in degrading
AFB1, DON, and ZEA into less toxic compounds. It could be
due to these LAB characteristics for providing binding with
mycotoxins or producing efficient enzymes for mycotoxin
degradation.

The merits of LABs and yeasts for detoxification include
the fact that they can be directly applicable in feedstuffs, have
a simple bioactivity property, are economical, and are able to
perform their detoxification properties quickly. The detoxifi-
cation ability is clearly strain-specific (it means that different
LAB or yeast strains might able to remove a particular my-
cotoxin or not) and can vary in different incubation times,
specific temperature and pH, adequate inoculum size, and be
able to reduce and eliminate mycotoxin concentration. The
most efficient LAB and yeast strains should be applied for
bio-decontamination mycotoxins and to enhance feed safety.
Therefore, before using them as mycotoxin detoxification
agents in feed, a variety of criteria including the feed’s own
characteristics, the potential mycotoxins and their fungal pro-
ducers, as well as LAB/yeast strains, should be taken into
account. However, even if clearly shown that LAB and yeast
strains can be positively involved in the detoxication of my-
cotoxin processes, more assessments in vitro and in vivo are
needed to describe the biochemical basis of the detoxification
mechanisms and also to optimize the effective conditions and
increase removal yield. A deeper comprehension of the bio-
chemical processes involved in LAB/yeast detoxification will
shed light on the creation of possible mycotoxin-detoxifying
bioactive substances. In fact, applications of LAB and yeasts
in the effective removal of mycotoxins can be regarded as
a perspective research field with importance for animal and
human health.

Even though there are several research projects regarding
probiotics application in feedstuffs, more data on the practi-
cal implementation and benefits in the feed industry is still
needed. Additionally, determining probiotic behavior and

benefits in various in vivo processes associated with safe
feedstuff production is needed. Several models in vitro and
their results should be protected by in vivo tests to validate
the effects of the LAB or yeast on mycotoxins availability
and toxicity. Moreover, different further studies in model
conditions, including the digestive system will contribute to
clarifying the obtained results in the in vitro experiments.
In this review article, the biodetoxification of normal adult
and healthy animal feed has been investigated. Therefore,
more complementary studies in this field are needed for bio-
decontamination of special animal feed, such as young or
sick animals, for which the maximum doses of mycotoxin
are different.
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Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., Walczak, J.,
Buszewski, B., 2018. Microbiology neutralization of zearalenone using
Lactococcus lactis and Bifidobacterium sp. Analytical and Bioanalytical
Chemistry, 410: 943-952.
https://doi.org/10.1007/s00216-017-0555-8

Lee, A., Cheng, K.C. and Liu, J.R., 2017. Isolation and characterization
of a Bacillus amyloliquefaciens strain with zearalenone removal ability
and its probiotic potential. PLoS ONE, 12(8): e0182220.
https://doi.org/10.1371/journal.pone.0182220

Lei, Y.P., Zhao, L.H., Ma, Q.G., Zhang, J.Y., Zhou, T., Gao, C.Q., Ji, C.,
2014. Degradation of zearalenone in swine feed and feed ingredients by
Bacillus subtilis ANSB01. World Mycotoxin Journal, 7(2): 143-151.
https://doi.org/10.3920/wmj2013.1623

Liew, W.P.P. and Mohd-Redzwan, S., 2018. Mycotoxin: its impact on gut
health and microbiota. Frontiers in Cellular and Infection Microbiology,
8: 60.
https://doi.org/10.3389/fcimb.2018.00060

Liu, F., Malaphan, W., Xing, F., Yu, B., 2019. Biodetoxification of fungal
mycotoxins zearalenone by engineered probiotic bacterium Lactobacil-
lus reuteri with surface-displayed lactonohydrolase. Applied Microbiol-
ogy and Biotechnology, 103: 8813-8824.
https://doi.org/10.1007/s00253-019-10153-1

Liu, A., Zheng, Y., Liu, L., Chen, S., He, L., Ao, X., Yang, Y., Liu, S.,
2020. Decontamination of aflatoxins by lactic acid bacteria. Current
Microbiology, 77: 3821-3830.
https://doi.org/10.1007/s00284-020-02220-y

Liu, M., Zhao, L., Gong, G., Zhang, L., Shi, L., Dai, J., Han, Y., Wu, Y.,
Khalil, M.M., Sun, L., 2022. Invited review: Remediation strategies for
mycotoxin control in feed. Journal of Animal Science and Biotechnology,
13(1): 19.
https://doi.org/10.1186/s40104-021-00661-4
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