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Abstract: Achieving sustainable cities and promoting responsible consumption require innovative approaches to chemical design and
manufacturing. Precise prediction of chemical biodegradability is crucial for evaluating environmental concerns and facilitating the transition
towards green chemistry. This study investigates the effectiveness of ten distinct groups of three-dimensional (3D) molecular descriptors
for classifying compounds with rapid biodegradability. The Merck molecular force field (MMFF94s) was used to compute descriptors
and generate 3D conformations for a dataset of chemical compounds. The dataset underwent rigorous preprocessing, including feature
selection, outlier management, and scaling. Support Vector Machines (SVMs) were tested alongside three tree-based ensemble learning
algorithms: Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), and Random Forest. Bayesian optimization was
employed to optimize model hyperparameters and enhance cross-validated Area Under the Receiver Operating Characteristic Curve (AUC).
The GETAWAY descriptors, 3D autocorrelation descriptors, and 3D-MoRSE descriptors consistently demonstrated superior performance
compared to other descriptors across all machine learning models. An SVM model trained on 3D autocorrelation descriptors achieved the
highest prediction accuracy (0.88), sensitivity (0.83), specificity (0.91), F1-score (0.82), Cohen’s Kappa statistic (0.74), and an AUC of 0.93
on an independent test set. Advanced analytical techniques, including Permutation Feature Importance (PFI), SHapley Additive exPlanations
(SHAP), and partial dependency plots (PDP) were utilized to identify the most influential 3D autocorrelation descriptors. The findings
of this study demonstrate that 3D molecular descriptors, particularly 3D autocorrelations, play a critical role in developing accurate and
interpretable models for predicting chemical biodegradability. These models contribute significantly to the advancement of green chemical
design and the development of effective regulatory policies that support the objectives of SDG 11 (Sustainable Cities and Communities) and
SDG 12 (Responsible Consumption and Production). By fostering sustainable chemical manufacturing practices, we can create healthier and
more resilient urban environments while minimizing the environmental impact of human activities.
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1 Introduction

The growing global demand for sustainable chemical solu-
tions is driven by mounting concerns over environmental
pollution and the necessary need for safer alternatives. Accu-
rate identification of readily biodegradable (RB) chemicals
is crucial for environmental risk assessment, minimizing

pollution, and promoting the development of eco-friendly
products. However, traditional experimental methods for
assessing biodegradability often prove time-consuming, ex-
pensive, and limited by their laboratory-based nature, which
may not fully reflect real-world environmental conditions
(Abdullah and Abdulazeez, 2021). Computational Quantita-
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tive Structure-Activity Relationship (QSAR) models, partic-
ularly those leveraging molecular descriptors and machine
learning algorithms, offer a promising alternative for faster
and more efficient biodegradability prediction (Ahmadi et
al., 2023) and (Bahia et al., 2023). Molecular descriptors
encode information about a molecule’s structure and proper-
ties, enabling the development of predictive models that can
classify chemicals as readily biodegradable or non-readily
biodegradable. While 2D descriptors have been widely used
in biodegradability prediction, recent advancements in com-
putational chemistry and machine learning have made 3D
descriptors increasingly accessible and valuable (Consonni
and Todeschini, 2010). Previous studies have demonstrated
the utility of 3D descriptors for modeling various toxicolog-
ical and environmental endpoints. However, the compara-
tive performance of different 3D descriptor groups for the
classification of readily biodegradable compounds remains
understudied (Consonni and Todeschini, 2010).

In this study, we investigate the performance of ten dis-
tinct 3D molecular descriptor groups for classifying readily
biodegradable compounds (Haddouchi and Berrado, 2019,
Lombardo et al., 2014, Chinedu et al., 2013). These de-
scriptors can capture detailed information about the spatial
arrangement and interactions of atoms within a molecule. We
generated 3D molecular conformations for a large dataset
of compounds and calculated the 10 different 3D descrip-
tor groups, including: 3D Matrix-Based, 3D Autocorrela-
tions, 3D Atom Pairs, Chemically advanced template search
(CATS), Geometrical, Radial distribution function (RDF), 3D
Molecular Representation of Structures based on Electron
diffraction (3D-MoRSE), Weighted Holistic Invariant Molec-
ular (WHIM), GEometry, Topology, and Atom-Weights As-
semblY (GETAWAY), Weighted Holistic Atom Localization
and Entity Shape (WHALES). The predictive powers of dif-
ferent 3D descriptor groups were explored through a rigor-
ous process involving feature selection, anomaly treatment,
cross-validation, model optimization, and evaluation using
various machine learning algorithms. Our goal is to iden-
tify the most effective 3D descriptor groups for accurately
predicting readily biodegradability, paving the way for more
efficient and reliable methods for identifying environmentally
friendly chemicals. We compared the performance of three
tree-based ensemble models (XGBoost, Gradient Boosting,
and Random Forest) and Support Vector Machines (SVM)
for the biodegradability classification task, optimizing the
hyperparameters of each model using Bayesian optimiza-

tion. Our findings demonstrate the utility of GETAWAY, 3D
autocorrelation, and 3D-MoRSE performed best across all
machine learning models outperforming other groups. The
insights gained from this study can inform the development
of accurate and interpretable computational models for the
environmental risk assessment of chemicals, ultimately sup-
porting more sustainable chemical design and regulation.

2 Data Acquisition and Descriptor
Extraction

The dataset used in this study was sourced from literature
and included the necessary information for the analysis (Lu
et al., 2023). Specifically, the dataset contained the CAS
Registry Numbers (CAS-RN), SMILES codes, and biodegra-
dation classifications (Readily Biodegradable or Non-Readily
Biodegradable) for a set of chemical substances. The CAS-
RN is a unique identifier that distinguishes individual chemi-
cal compounds, even when multiple names exist for the same
substance. The SMILES code, on the other hand, is a line
notation that represents the chemical structure of a molecule.
To ensure the quality of the dataset, the SMILES codes were
checked and canonicalized using the alvaMolecule software
(Mansouri et al., 2013), and any duplicate entries were re-
moved. This process resulted in a final dataset of 1717 unique
chemical records, consisting of 545 Readily Biodegradable
(RB) and 1172 Non-Readily Biodegradable (NRB) com-
pounds. The entire data processing and modeling work-
flow was executed within the KNIME platform, utilizing a
multi-step approach. Starting with SMILES codes, we gener-
ated 3D molecular structures using the RDKIT node and the
MMFF94s force field. To account for molecular flexibility,
up to 10 conformers were generated per molecule. Recog-
nizing the sensitivity of 3D descriptors to conformational
variation—ranging from highly sensitive descriptors like 3D
Matrix-Based, 3D Autocorrelations, 3D Atom Pairs, and
CATS 3D to less sensitive descriptors such as Geometrical,
RDF, 3D-MoRSE, WHIM, GETAWAY, and WHALES—we
employed a strategy of generating multiple conformations
and averaging descriptor values. This approach ensured a
more robust and representative feature vector for each com-
pound. To capture a comprehensive set of 3D structural fea-
tures relevant to biodegradability, we calculated ten distinct
3D molecular descriptor groups using the alvaDesc calculator
node within KNIME. Figure 1 shows descriptor generation
and feature selection steps.
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Figure 1. Descriptor generation and feature selection steps.
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Table 1 provides a summary of each descriptor group, in-
cluding a brief description and the number of descriptors
within each group. Recognizing the inherent flexibility of
molecules and the sensitivity of 3D descriptors to conforma-
tional variations, we implemented a multi-conformer aver-
aging strategy. This involved generating multiple conforma-
tions for each molecule and then averaging the descriptor
values across these conformers. This approach mitigates the
potential bias introduced by a single, potentially arbitrary
conformation, leading to a more reliable and generalizable
representation of the molecule’s 3D structure. By account-
ing for conformational flexibility, we can develop more ro-
bust and accurate predictive models for classifying readily
biodegradable chemicals.

Figure 2 provides a statistical summary of the Information
Gain (IG) values of each 3D descriptor group. The table
includes the number of descriptors, maximum IG, mean IG,
standard deviation (STD) of IG values, and the overall sum
of the IG values of each group (Mauri and Bertola, 2022).
Notably, the 3D autocorrelation descriptor group stands out
as the most informative for predicting the biodegradability
of the compounds. This group contains the feature with the
maximum IG of 0.206, the highest mean IG of 0.085, and
the largest standard deviation of 0.052. These statistics in-
dicate that the 3D autocorrelation descriptors capture the
most relevant structural information for distinguishing read-
ily biodegradable from non-readily biodegradable chemicals.
Figure 2 further illustrates the maximum IG achieved by the
different 3D descriptor groups. This visual representation
reinforces the finding that the 3D autocorrelation descrip-
tors possess the most predictive power among the evaluated
groups.

3 Preprocessing and Feature Selection

As a preprocessing step, any constant or near-constant de-
scriptors (with variance less than 0.01) were removed from
the dataset to avoid redundant or uninformative features. The
remaining dataset was then normalized with z-score nor-
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malization (Gaussian) and partitioned into training and test
subsets, with an 80:20 split, respectively. To identify the
most relevant and uncorrelated features for the subsequent
modeling and analysis, a multi-step feature selection process
was implemented. First, for each 3D descriptor group, the
descriptors were ranked according to their Information Gain
(IG) values. Descriptors with an IG less than 0.01 of the
group’s maximum IG were excluded from further considera-
tion. This step ensured that the models would focus on the
most predictive structural characteristics of the molecules.
Next, the remaining descriptors were subjected to correla-
tion analysis. Descriptors with a correlation exceeding 95%
with other selected descriptors were removed, retaining only
one representative from each highly correlated group. This
helped to minimize redundancy and multicollinearity among
the input features. Finally, the selected descriptors underwent
an outlier treatment process. For each descriptor, the first and
third quartiles (Q1, Q3) were computed, and the interquar-
tile range (IQR = Q3 - Q1) was calculated. Any records
outside the range [Q1 - 1.5 * IQR, Q3 + 1.5 * IQR] were
flagged as outliers and replaced with the nearest permitted
value (Mauri, A., 2020). This outlier treatment step helped
to improve the robustness and reliability of the subsequent
modeling. By implementing this feature selection and pre-
processing pipeline, the developed models were able to focus
on the most relevant, uncorrelated, and well-behaved 3D
structural descriptors. This optimization of the input features
ultimately enhanced the performance and interpretability of
the biodegradability classification models.

4 Machine Learning (ML) Methods

Four standard ML models were investigated in combination
with different 3D molecular representation groups: Gradient
Boosting (GB) (Nahm, F. S., 2022), XGBoost (XGB) (Moos-
bauer et al., 2021), random forest (RF) (Natekin and Knoll,
2013) and support vector machine SVM (Obikee and Happi-
ness, 2014). Values of the hyperparameters for each model
that showed the best cross validated area under the receiver
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Figure 2. The maximum IG of each 3D molecular descriptor groups.
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Table 1. Statistics of information gain (IG) of all descriptors for each 3-D molecular Descriptor Groups

. IG
1o 0l Description Count Max IG Mean IG Sum
Group STD

Represent the 3D molecular structure using a
3D Matrix-Based matrix that encodes geometric relationships 103 0.190 0.048 0.048 4.989
(distances, angles, torsions) between atom pairs.

Capture the 3D arrangement of functional groups

3D and atoms by encoding the autocorrelation of 3D

Autocorrelations  atomic properties (e.g., charge, electronegativity)
across the molecular structure.

78 0.206 0.085 0052 6.5%

Provide a compact description of 3D molecular
3D Atom Pairs  shape and potential interactions by representing the 31 0.082 0.013 0.021 0.388
3D distances between pairs of atoms.

Encode the topological distances between specific
pharmacophore features within molecules,
CATS capturing spatial relationships in 3D space to aid in 175 0.074 0.007 0012 1224
the analysis and prediction of molecular
interactions and activities.

Represent the 3D shape of a molecule by capturing
Geometrical geometric properties like distances, angles, and 36 0.142 0.049 0.035 1.769
torsions between atoms.

Describe the density of atoms at various distances
from a central atom, providing a statistical

RDF 210 0.1 0.017 0.020 597
representation of the 3D distribution of interatomic 33 33
distances within a molecule.
Derived from 3D atomic coordinates obtained from
3D-MoRSE electron diffraction studies, these descriptors 220 0.188 0.056 0040 12284

represent the 3D structure of molecules based on
electron diffraction.

Encode 3D shape, size, and atom distribution
WHIM characteristics, providing an interpretable summary 83 0.095 0.030 0.020 2513
of'key 3D molecular properties.

Combine 3D geometric, topological, and atomic
GETAWAY properties to represent a diverse set of 3D features 223 0.158 0.041 0.038 9.179
relevant to molecular structure and function.

Quantify the 3D distribution and properties of
WHALES atoms within the molecular structure, potentially 33 0.088 0.038 0.031 1.238
correlating with specific biological mechanisms.
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operating characteristic curve (AUC) have been determined
using Bayesian optimization (BO).

4.1 Gradient boosting (GB)

Gradient Boosting is an ensemble learning method that com-
bines multiple decision trees to make predictions. It works
by sequentially adding trees that minimize the errors of pre-
vious trees, using a gradient descent approach. This iterative
process leads to highly accurate models, particularly for com-
plex datasets. Key hyperparameters include the number of
trees, the maximum depth of each tree, and the learning rate.
Advantages of Gradient Boosting include its high accuracy,
ability to handle diverse datasets, and robustness to outliers.
However, it can be computationally expensive and suscepti-
ble to overfitting if not properly tuned.

4.2 XGBoost (XGB)

XGBoost (Extreme Gradient Boosting) is a powerful ma-
chine learning algorithm for classification tasks. It excels at
handling complex datasets and often outperforms other meth-
ods. XGBoost works by sequentially building an ensemble
of decision trees, where each tree aims to correct the errors
made by previous trees. It uses a gradient boosting algorithm
to minimize the loss function at each iteration. Key hyper-
parameters include the number of trees, the maximum depth
of each tree, the learning rate, and the fraction of data and
features used for training each tree. XGBoost is known for
its regularization techniques that prevent overfitting, leading
to robust and accurate models. It is widely used in various
domains, including finance, healthcare, and natural language
processing.

4.3 Random forest (RF)

Random Forest is an ensemble learning method that com-
bines multiple decision trees to make predictions. It builds
each tree on a random subset of the data and features, reduc-
ing variance and improving generalization. This ensemble
approach often leads to high accuracy and robustness. Key
hyperparameters include the number of trees, the maximum
depth of each tree, and the number of features considered at
each split. Advantages of Random Forest include its ability
to handle high-dimensional data, its resistance to overfitting,
and its relative ease of interpretation. However, it can be
computationally expensive, especially for large datasets, and
may not provide as much interpretability as simpler models.

4.4 Support vector machine (SVM)

Support Vector Machines (SVM) with a Radial Basis Func-
tion (RBF) kernel are powerful classification models that aim
to find the optimal hyperplane to separate different classes in
a high-dimensional feature space. The RBF kernel allows for
non-linear decision boundaries, making SVM well-suited for

complex datasets. Key hyperparameters include the regular-
ization parameter (C) and the gamma parameter (v) which
controls the influence of individual data points. Advantages
of RBF-SVM include high accuracy, robustness to outliers,
and ability to handle non-linear relationships. However, it can
be computationally expensive, especially for large datasets,
and can be sensitive to the choice of hyperparameters.

4.5 Bayesian optimization

To optimize the hyperparameters of our four classification
models (GB, XGB, RF, and SVM), we employed Bayesian
optimization within the KNIME platform. This approach
utilizes the Tree-structured Parzen Estimator (TPE) algo-
rithm for efficient hyperparameter tuning (Penso et al., 2021).
The Bayesian optimization process involves a two-phase ap-
proach:

eWarm-up Phase: An initial set of random hyperparameter
combinations are sampled and evaluated. These evaluations
are used to build a probabilistic model of the objective func-
tion, which in our case is the cross-validated Area Under the
Curve (AUC).

eExploration and Exploitation Phase: The TPE algorithm
intelligently selects promising hyperparameter combinations
based on the probabilistic model. This phase iteratively ex-
plores the search space, aiming to identify optimal hyperpa-
rameters that maximize the cross-validated AUC.

The search space for each hyperparameter is defined by
specifying start and stop values, optionally restricting the
search with a step size. The optimization loop runs for a pre-
determined number of iterations, sampling hyperparameter
combinations with replacement. Bayesian optimization in-
telligently explores the search space, focusing on promising
regions, and avoiding unnecessary evaluations. The proba-
bilistic model within Bayesian optimization helps to handle
complex optimization landscapes, making it more resilient
to local optima. By identifying optimal hyperparameters,
Bayesian optimization improves the performance of classifi-
cation models, ensuring they are optimally tuned for specific
tasks, such as biodegradability classification, thereby maxi-
mizing predictive accuracy and robustness.

5 Model/Group Evaluation

Five performance metrics have been used to compare the re-
sults of the optimized models GB, XGB, RF, and SVM with
different 3D molecular descriptor groups. They include accu-
racy, sensitivity, specificity, F1 score, Kappa, and AUC. Most
of them are computed using confusion matrix parameters
like true positive TP, true negative (TN), false positive (FP),
false negative (FN). The evaluation metrics are calculated as
follows:

While simple accuracy measures, like the percentage of
correct predictions, can be misleading when chance agree-
ment is high, Kappa provides a more nuanced assessment
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of agreement. It quantifies how much better the observed
agreement is compared to what we’d expect by chance alone.
Kappa is calculated by comparing the observed agreement
(Po), the proportion of cases where both raters (or the model
and true labels) agree, to the expected agreement by chance
(Pe), which is the probability of agreement based on the
marginal frequencies of each category. The Area Under the
Curve (AUC) of the Receiver Operating Characteristic (ROC)
curve is a valuable metric for evaluating classification mod-
els (Pires et al., 2022). The ROC curve plots the model’s
ability to distinguish between classes at various thresholds,
showing the trade-off between true positive rate (sensitivity)
and false positive rate (1-specificity). A perfect model would
have a curve reaching the upper left corner (100% sensitivity
and specificity), indicating perfect separation of classes. The
AUC-ROC curve summarizes this performance, reflecting the
model’s overall ability to distinguish between positive and
negative cases. A higher AUC indicates a stronger model, bet-
ter at classifying readily biodegradable (RB) and non-readily
biodegradable (NRB) molecules.

Bayesian optimization was employed to tune the hyper-
parameters of each machine learning model for each of the
ten 3D molecular descriptor groups. The model/group com-
bination that achieved the highest cross-validated AUC was
selected for constructing the final model. Figure 3 illustrates
the cross-validated AUC scores for the four models (SVM,
XGBoost, Gradient Boosting, Random Forest) across the ten
3D descriptor groups.

Notably, the 3D MoRSE group achieved (0.91, 0.91, 0.91,

M
@

3)
“4)

(&)

and 0.9) AUC when using GB, XGB, RF and SVM respec-
tively, while the 3D Autocorrelation group achieved an AUC
of 0.90 with all models. The GETAWAY group also per-
formed well, achieving AUC scores of 0.89-0.90 across the
models. In contrast, the 3D Atom pairs, WHALES, and
CATS 3D groups consistently yielded lower AUC scores
across all models, indicating less effective performance in
predicting readily biodegradability.

Table 2 summarizes all other performance metrics on the
training and test datasets. These metrics include accuracy
(ACO), sensitivity (Sen), specificity (Spec), F1 score (F1),
Kappa, and AUC. The table shows that for the training subset,
as expected, the three tree-based ensembles outperform the
SVM model. The three ensembled achieved almost 100%
training performance with all groups except 3D Atom Pairs
and CATS 3D groups.

For the test data, SVM with 3D autocorrelation groups
achieved the best performance with accuracy of 0.88, sensi-
tivity of 0.83, specificity of 0.91, F1 score of, 0.82, Kappa of
0.74, and finally the AUC 0f0.93. These results include the
best accuracy, sensitivity, F1, Kappa, and AUC compared to
all other model/group combinations.

Based on the test dataset, the SVM model using the 3D
Autocorrelation descriptor group achieved the best overall
performance, with an accuracy of 0.88, sensitivity of 0.83,
specificity of 0.91, F1 score of 0.82, Kappa of 0.74, and AUC
of 0.93. This combination outperformed all other model/de-
scriptor group combinations across these metrics. The Gra-
dient Boosting (GB) model with the GETAWAY descriptor
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Figure 3. Cross-validated AUC of four ML models evaluated with ten 3D molecular descriptor groups.
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group consistently demonstrated strong performance, rank-
ing second to the SVM/3D Autocorrelation combination for
most metrics.

eAccuracy: The GB/ GETAWAY model achieved an ac-
curacy of 0.87, trailing slightly behind the top performer.

eSensitivity: Similarly, the GB/GETAWAY combination
achieved a sensitivity of 0.82, ranking second.

eSpecificity: The XGBoost and GB models with 3D Au-
tocorrelation descriptors tied for the highest specificity at
0.93.

oF1 Score: The GB/ GETAWAY model achieved an F1
score of 0.8, again ranking second.

eKappa: The GB/ GETAWAY model achieved a Kappa
score of 0.71, placing second. Importantly, no other mod-
el/descriptor combination achieved a Kappa score above 0.7.

eAUC: The GETAWAY group paired with XGBoost, GB,
and RF achieved an AUC score of 0.93, mirroring the perfor-
mance of the SVM/3D Autocorrelation combination.

These findings highlight the strong performance of both

the SVM/3D Autocorrelation and GB/GETAWAY combi-
nations. While SVM/3D Autocorrelation exhibited slightly
superior overall performance, the GB model with GETAWAY
demonstrated consistently high scores across a range of
metrics, solidifying its position as a strong contender for
biodegradability prediction. To comprehensively assess the
performance of different 3D molecular descriptor sets we
pooled the test metric values across all combinations. Figure
3 analyzes the performance of each descriptor group across
all models. This figure demonstrates that the GETAWAY,
3D Autocorrelation, and 3D MoRSE descriptor groups con-
sistently achieved the highest scores, indicating their effec-
tiveness in predicting readily biodegradability. Conversely,
the CATS 3D, WHALES, and 3D Atom Pairs groups per-
formed the worst, suggesting they were less informative for
this task. The remaining descriptor groups exhibited average
performance.

The GETAWAY, 3D Autocorrelation, and 3D MoRSE de-
scriptors consistently outperformed other groups. In contrast,

Table 2. Illustrates the contaminant factor for Al Shigqah mining

Model 3D Descriptor Training Test
Acc Sen  Spec F1.00 KAPPA Acc Sen Spec F1 KAPPA AUC
GB 3D matrix-based 1.00 1.00  1.00 1.00 1.00 0.82 0.77 0.84 0.73 0.60 0.86
3D 1.00 1.00  1.00 1.00 1.00 0.87 0.72 0.93 0.78 0.68 0.93
3D Atom Pairs 084 052 099 067 0.58 0.70 0.28 0.90 0.38 021 0.69
CATS 3D 098 097 099 098 0.96 0.77 0.63 0.84 0.64 047 0.82
Geometrical 1.00 1.00  1.00 1.00 1.00 0.81 0.71 0.86 0.71 0.57 0.89
RDF 1.00 1.00  1.00 1.00 1.00 0.84 0.77 0.87 0.76 0.64 0.90
3D-MoRSE 1.00 1.00  1.00 1.00 1.00 0.85 0.73 0.90 0.76 0.65 091
WHIM 1.00 1.00  1.00 1.00 1.00 0.80 0.68 0.86 0.69 0.55 0.89
GETAWAY 1.00 1.00  1.00 1.00 1.00 0.87 0.82 0.90 0.80 0.71 0.93
WHALES 1.00 1.00  1.00 1.00 1.00 0.72 0.52 0.81 0.54 0.34 0.78
XGB 3D matrix-based 1.00 1.00  1.00 1.00 1.00 0.79 0.73 0.82 0.70 0.54 0.86
3D 1.00 1.00  1.00 1.00 1.00 0.86 0.70 0.93 0.76 0.65 0.92
3D Atom Pairs 076 045 091 0.55 0.39 0.71 0.33 0.89 0.42 025 0.70
CATS 3D 096 092 098 094 0.91 0.80 0.67 0.87 0.69 0.55 0.86
Geometrical 099 097 099 098 0.97 0.84 0.73 0.89 0.74 0.62 0.87
RDF 1.00 1.00  1.00 1.00 0.99 0.84 0.81 0.86 0.77 0.64 0.90
3D-MoRSE 1.00 1.00  1.00 1.00 1.00 0.83 0.71 0.88 0.72 0.60 091
WHIM 097 093 098 094 0.92 0.83 0.72 0.89 0.74 0.62 0.89
GETAWAY 1.00 1.00  1.00 1.00 1.00 0.86 0.80 0.88 0.78 0.67 0.93
WHALES 1.00 1.00 1.00 1.00 1.00 0.71 0.50 0.82 0.53 0.32 0.76
RF 3D matrix-based 1.00 1.00  1.00 1.00 1.00 0.82 0.76 0.84 0.73 0.59 0.88
3D 1.00 1.00  1.00 1.00 1.00 0.82 0.68 0.89 0.71 0.58 0.92
3D Atom Pairs 0.68 0 1.00 - 0 0.68 0 1.00 - 0 061
CATS 3D 094 083 099 0.89 0.85 0.78 0.44 0.93 0.56 042 0.83
Geometrical 1.00 1.00  1.00 1.00 1.00 0.84 0.71 0.91 0.74 0.63 0.89
RDF 1.00 1.00 1.00 1.00 1.00 0.83 0.73 0.87 0.73 0.60 0.90
3D-MoRSE 1.00 1.00  1.00 1.00 1.00 0.85 0.72 0.91 0.76 0.65 0.92
WHIM 1.00 1.00  1.00 1.00 1.00 0.81 0.66 0.89 0.70 0.56 0.90
GETAWAY 1.00 1.00  1.00 1.00 1.00 0.86 0.78 0.89 0.78 0.67 0.93
WHALES 1.00 1.00 1.00 1.00 1.00 0.74 0.49 0.86 0.55 0.37 0.80
SVM 3D matrix-based 082 066 089 0.70 0.57 0.80 0.66 0.86 0.68 0.53 0.86
3D 095 091 097 0.92 0.88 0.88 0.83 0.91 0.82 0.74 0.93
3D Atom Pairs 069 014 095 0.23 0.11 0.71 0.16 0.97 0.26 0.16 0.69
CATS 3D 091 085 093 0.85 0.78 0.81 0.73 0.84 0.71.00 057 0.87
Geometrical 08 075 091 0.77 0.67 0.82 0.72 0.87 0.72 0.59 0.87
RDF 093 089 094 089 0.83 0.82 0.79 0.83 0.74 0.60 091
3D-MoRSE 092 088 094 0.88 0.82 0.85 0.8 0.88 0.78 0.67 091
WHIM 090 082 093 0.83 0.76 0.84 0.76 0.88 0.75 0.64 091
GETAWAY 089 081 093 0.83 0.75 0.85 0.78 0.88 0.77 0.65 0.92
WHALES 084 057 097 0.69 0.59 0.73 0.46 0.86 0.52 0.34 0.73

82

Applied Environmental Biotechnology (2024) - Volume 9, Issue 2



Elsayad, Ahmed, Elsayad, Hassan, Mustafa, Khan, Ali, Mokhtar

PFI of 3D autocorrelation Descriptors
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Figure 4. PFI importance analysis of the 3D autocorrelation molecular descriptors (42 predictive descriptors) with SVM model. Number of

permutations (10) and performance metric Cohen’s Kappa.

the 3D Atom Pairs, CATS 3D, and WHALES descriptors
achieved significantly lower performance. The performance
differences between the descriptor groups likely stem from
the specific types of structural information they capture and
their relevance to readily biodegradability.

oGETAWAY: This descriptor group captures a broad range
of 3D features, including geometric, topological, and atomic
properties. It excels at capturing the overall shape, electro-
static potential, and surface characteristics of a molecule,
all of which are crucial for interactions with enzymes and
microorganisms involved in biodegradation.

3D Autocorrelation: These descriptors encode the spa-
tial distribution of specific atom types or functional groups.
By capturing the 3D arrangement of these features, they can
identify crucial structural motifs associated with biodegrada-
tion pathways.

3D MoRSE: These descriptors represent a molecule’s 3D
structure based on electron diffraction studies. They effec-
tively capture a wide range of molecular properties, including
size, shape, and electronic effects, which can significantly
impact a molecule’s susceptibility to biodegradation.

Other descriptor groups (especially 3 Atom Pairs) might
overlook critical long-range interactions and the overall
molecular shape, both of which are significant for biodegrad-
ability. Additionally, they might not directly capture the
intricate mechanisms of biodegradation, which involve a
complex interplay of factors.

6 Feature Importance

Given its superior performance, the combination SVM/3D
autocorrelation was selected for further investigation using
the Permutation Feature Importance (PFI) (Qu et al., 2023),
Shapley analysis (SHAP) (Ramraj et al., 2016), and Partial
Dependence Plot (PDP) algorithms (Ramraj et al., 2016) and
(Rocha and Sheen, 2016). PFI assesses the importance of
individual features by measuring the impact of randomly
shuffling their values on the model’s performance (Singh et

Applied Environmental Biotechnology (2024) - Volume 9, Issue 2

al., 2021). It calculates the difference between the model’s
score using all original features and the score achieved when
one specific feature is randomly permuted. The process is
repeated multiple times for each feature, and the average
difference in scores, along with the standard deviation, is
calculated. A larger decrease in performance after shuffling
a feature indicates that it is more important to the model’s
predictions. Figure 4 shows PFI computed successfully using
Cohen’s kappa and the class of interest "RB” for SVM and
3D autocorrelation descriptors.

PFI analysis provided insights into the relative importance
of all predictive features in the SVM model. The results of
the analyses showed that the first five descriptors (TDBO03v,
TDBO3p, TDB02p, TDBO1e, and TDBO04e) were relatively
more important features in the SVM prediction model. This
information is valuable for understanding the structural fea-
tures that influence biodegradability and for developing more
accurate and robust prediction models. The 3D autocorre-
lation descriptors like TDB capture the spatial distribution
of certain molecular properties within a molecule. They are
essentially measures of how different chemical features are
correlated in 3D space. The fact that these descriptors are
most important suggests that the following aspects of the
molecule likely play a crucial role in biodegradability.

oTDBO03v: Measures the autocorrelation of the presence of
atoms with a specific property at a distance of 3 bonds. This
might indicate that the presence of specific functional groups
or atom types spaced 3 bonds apart influences biodegradabil-
ity.

oTDB03p, TDB02p: These descriptors relate to the auto-
correlation of properties over specific distances, suggesting
that the arrangement of atoms and functional groups within a
certain range is critical.

oTDBO01e, TDB04e: These descriptors emphasize the im-
portance of electrostatic properties, particularly at specific
distances within the molecule.

Understanding the importance of these descriptors allows
us to establish relationships between molecular structure and

83



Predicting Chemical Biodegradability for Sustainable Chemical Manufacturing: A Machine Learning Approach Using 3D Molecular Descriptors

Summation of all test performance metrics

21.00

20.00 19.44

18.58

—
—_
(=N
o

19.00 — 18.07

18.00 17.11
17.00

16.00

15.00

14.00

13.00

12.00 -

11.00

3D matrix-based
3D autocorrelations
3D Atom Pairs I
CATS 3D
Geometrical

19.67
18.94 1915
18.46
14.78

o m = - )
=] 2] = < m
~ ~x = =

c

< 2 = =

a = =

0 0

Figure 5. Summation of all performance metrics of 3D molecular descriptor groups across all ML model.
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Figure 6. SHAP summary plot of the top 20 features and class RB for 100 test records.

biodegradability. This can help you design molecules with
desired biodegradability properties. To further validate the
importance of the identified 3D autocorrelation descriptors,
we employed the SHAP (SHapley Additive exPlanations)
method. SHAP is generally used by researchers to solve
black-box problems associated with ML models and to assess
the interaction or synergy of two variables. We analyzed 100
test records to assess the relationship between each descriptor
and the predicted RB class (Figure 6). The SHAP summary
plot ranks the descriptors based on the mean absolute SHAP
value, revealing the top 20 most influential descriptors. A
positive SHAP value indicates a positive correlation between
the descriptor and the RB class, with larger values signifying
a greater contribution to the prediction. The SHAP analysis
confirmed the findings of the Permutation Feature Importance
(PFI) analysis, identifying the same top descriptors: TDB03v,
TDBO03p, TDB02p, TDB04e, and TDBOle. This consistency

across two independent methods strengthens our confidence
in the predictive importance of these specific 3D autocorrela-
tion descriptors for biodegradability classification.

To further elucidate the relationship between the top 3D au-
tocorrelation descriptors and predicted biodegradability, we
employed Partial Dependence Plot (PDP) analysis. PDP anal-
ysis provides a graphical representation of how changes in
individual descriptor values influence the predicted probabil-
ity of a compound being readily biodegradable (RB). Figure
7 illustrates the PDPs for the five most influential 3D autocor-
relation descriptors (TDB0O3v, TDB0O3p, TDB02p, TDBOle,
and TDBO4e) identified in our SVM model. Interestingly,
four of these descriptors (TDB03v, TDB03p, TDB02p, and
TDBOle) displayed a consistent trend: as their values in-
creased, the predicted probability of RB decreased (6a), (6b),
(6¢), and (6d). This suggests that higher values for these
descriptors are associated with lower biodegradability. In
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contrast, the descriptor TDB04e exhibited an inverse rela-
tionship, where increasing values corresponded to a higher
predicted RB probability (7e). This detailed PDP analysis
provides valuable insights into the complex relationships be-
tween specific 3D structural features and biodegradability,
enhancing our understanding of the model’s predictive behav-
ior and highlighting potentially important structural motifs
for biodegradability.

7 Conclusion

This research provides critical insights into the application of
3D molecular descriptors for predicting chemical biodegrad-
ability, a crucial factor in advancing sustainable chemical
manufacturing and achieving the goals of SDG 11 (Sustain-
able Cities and Communities) and SDG 12 (Responsible Con-
sumption and Production). Our comprehensive investigation
of ten descriptor groups and machine learning algorithms re-
vealed that GETAWAY, 3D Autocorrelation, and 3D MoRSE
descriptors consistently demonstrated superior performance
in predicting readily biodegradability. This underscores the
importance of capturing detailed 3D structural information,
particularly the spatial distribution of functional groups and
atomic properties, for accurate biodegradability assessment.

The superior performance of 3D autocorrelation descrip-
tors is attributed to their ability to capture the spatial arrange-
ment of functional groups and atoms, long-range interactions,
and key structural motifs. This descriptor group combines
3D geometric, topological, and atomic properties, offering a
comprehensive representation of a molecule’s structure. This
comprehensive approach likely allows GETAWAY to capture
diverse aspects of a molecule’s interaction with biodegra-
dation pathways, leading to improved prediction accuracy.
The findings of this study have significant implications for
the design of sustainable chemical products and processes.
By utilizing 3D molecular descriptors and machine learning
algorithms to predict biodegradability, we can:

Contribute to building sustainable cities: By promoting
the development and use of readily biodegradable chemi-
cals, we can minimize the environmental burden associated
with chemical manufacturing and waste disposal, leading
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to cleaner and healthier urban environments. Advance re-
sponsible consumption and production: By identifying and
prioritizing the use of biodegradable chemicals, we can move
towards a circular economy model that reduces resource de-
pletion and minimizes environmental pollution. The high
accuracy of the SVM model trained on 3D autocorrelation
descriptors (0.88 accuracy, 0.83 sensitivity, 0.91 specificity,
0.82 F1-score, 0.74 Cohen’s Kappa statistic, and 0.93 AUC)
provides further evidence for the potential of this approach.
By leveraging 3D molecular descriptors and machine learn-
ing, we can develop more sustainable chemical products and
processes, fostering a healthier and more sustainable future
aligned with the objectives of SDG 11 and SDG 12.
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