Baird, R.B., Eaton, A.D. and Rice, E.W., 2017. 2540 Solids. In Standard Methods for the Examination of Water and Wastewater.
Banks, C.J., Chesshire, M., Heaven, S. and Arnold, R., 2011. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresource Technology, 102(2): 612–620.
https://doi.org/10.1016/j.biortech.2010.08.005
Blasius, J.P., Contrera, R.C., Maintinguer, S.I. and Alves de Castro, M.C.A., 2020. Effects of temperature, proportion and organic loading rate on the performance of anaerobic digestion of food waste. Biotechnology Reports, 27, e00503.
https://doi.org/10.1016/j.btre.2020.e00503
Budiyono, B., Syaichurrozi, I. and Sumardiono, S., 2013. Biogas production from bioethanol waste: the effect of pH and urea addition to biogas production rate. Waste Technology, 1(1): 1–5.
https://doi.org/10.12777/wastech.1.1.2013.1-5
Dioha, I.J., Ikeme, C., Nafi, T., Soba, N.I. and Mbs, Y., 2013. Effect of carbon to nitrogen ratio on biogas production. International Research Journal of Natural Sciences, 1(3): 1–10.
https://doi.org/10.37745/irjns.13
Elbeshbishy, E., Nakhla, G. and Hafez, H., 2012. Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresource Technology, 110: 18–25.
https://doi.org/10.1016/j.biortech.2012.01.025
Gunaseelan, V.N., 2004. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and Bioenergy, 26(4): 389–399.
https://doi.org/10.1016/j.biombioe.2003.08.006
Hussain, A., Kumar, P. and Mehrotra, I., 2010. Nitrogen biotransformation in anaerobic treatment of phenolic wastewater. Desalination, 250(1): 35–41.
https://doi.org/10.1016/j.desal.2009.09.018
Hussain, A., Parveen, T., Kumar, P. and Mehrotra, I., 2009. Phenolic wastewater: Effect of F/M on anaerobic degradation. Desalination and Water Treatment, 2(1–3): 260–265.
https://doi.org/10.5004/dwt.2009.291
Khalid, A., Arshad, M., Anjum, M., Mahmood, T. and Dawson, L., 2011. The anaerobic digestion of solid organic waste. Waste Management, 31(8): 1737–1744.
https://doi.org/10.1016/j.wasman.2011.03.021
Kim, M.S., Kim, D.H. and Yun, Y.M., 2017. Effect of operation temperature on anaerobic digestion of food waste: Performance and microbial analysis. Fuel, 209(August): 598–605.
https://doi.org/10.1016/j.fuel.2017.08.033
Lisboa, M.S. and Lansing, S., 2013. Characterizing food waste substrates for co-digestion through biochemical methane potential (BMP) experiments. Waste Management, 33(12): 2664–2669.
https://doi.org/10.1016/j.wasman.2013.09.004
Luna-delRisco, M., Normak, A. and Orupõld, K., 2011. Biochemical methane potential of different organic wastes and energy crops from Estonia. Agronomy Research, 9(1–2): 331–342.
Mohan, S. and Jagadeesan, K., 2013. Production of Biogas by Using Food Waste. International Journal of Engineering Research and Applications, 3(4): 390–394.
Negi, S., Dhar, H., Hussain, A. and Kumar, S., 2018. Biomethanation potential for co-digestion of municipal solid waste and rice straw: A batch study. Bioresource Technology, 254: 139–144.
https://doi.org/10.1016/j.biortech.2018.01.070
Ofoefule, A.U., Nwankwo, J.I., Cynthia N. and Ibeto, C.N., 2010. Biogas production from paper waste and its blend with cow dung. Advances in Applied Science Research, 1(2): 1–8.
Pandyaswargo, A.H., Onoda, H. and Nagata, K., 2015. Energy recovery potential and life cycle impact assessment of municipal solid waste management technologies in Asian countries using ELP model. International Journal of Energy and Environmental Engineering, 3, 28.
https://doi.org/10.1186/2251-6832-3-28
Parker, W.J., 2005. Application of the ADM1 model to advanced anaerobic digestion. Bioresource Technology, 96(16): 1832–1842.
https://doi.org/10.1016/j.biortech.2005.01.022
Rao, M.S. and Singh, S.P., 2004. Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield-organic loading relationships for process optimisation. Bioresource Technology, 95(2): 173–185.
https://doi.org/10.1016/j.biortech.2004.02.013
Tanimu, M.I., Ghazi, T.I.M., Harun, R.M. and Idris, A., 2014. Effect of carbon to nitrogen ratio of food waste on biogas methane production in a batch mesophilic anaerobic digester. International Journal of Innovation, Management and Technology, 5(2): 116–119.
https://doi.org/10.7763/IJIMT.2014.V5.497
Ward, A.J., Hobbs, P.J., Holliman, P.J. and Jones, D.L., 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99(17): 7928–7940.
https://doi.org/10.1016/j.biortech.2008.02.044
Yang, Y., Tsukahara, K., Yagishita, T. and Sawayama, S., 2004. Performance of a fixed-bed reactor packed with carbon felt during anaerobic digestion of cellulose. Bioresource Technology, 94(2): 197–201.
https://doi.org/10.1016/j.biortech.2003.11.025
Zhu, G. and Jha, A.K., 2013. Psychrophilic dry anaerobic digestion of cow dung for methane production: Effect of inoculum. ScienceAsia, 39(5): 500–510.
https://doi.org/10.2306/scienceasia1513-1874.2013.39.500