Azeem, I., Adeel, M., Ahmad, M.A., Shakoor, N., Zain, M., Yousef, N., Yinghai, Z., Azeem, K., Zhou, P., White, J.C., 2022. Microplastic and nanoplastic interactions with plant species: trends, meta-analysis, and perspectives. Environmental Science & Technology Letters, 9: 482-492.
https://doi.org/10.1021/acs.estlett.2c00107
Ben, Rejeb, K., Abdelly, C., Savouré, A., 2014. How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80: 278-284.
https://doi.org/10.1016/j.plaphy.2014.04.007
Boublin, F., Cabassa-Hourton, C., Leymarie, J., Leitao, L., 2022. Potential involvement of proline and flavonols in plant responses to ozone. Environmental Research, 207: 112214.
https://doi.org/10.1016/j.envres.2021.112214
Chen, G., Li, Y., Liu, S., Junaid, M., Wang, J., 2022. Effects of micro(nano)plastics on higher plants and the rhizosphere environment. Science of the Total Environment, 807: 150841.
https://doi.org/10.1016/j.scitotenv.2021.150841
de Souza Machado, A.A., Lau, C.W., Kloas, W., Bergmann, J., Bachelier, J.B., Faltin, E., Becker, R., Görlich, A.S., Rillig, M.C., 2019. Microplastics can change soil properties and affect plant performance. Environmental Scicence & Technology, 53: 6044-6052.
https://doi.org/10.1021/acs.est.9b01339
Dong, Y., Gao, M., Song, Z., Qiu, W., 2020. Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution, 259: 113892.
https://doi.org/10.1016/j.envpol.2019.113892
Ekner-Grzyb, A., Duka, A., Grzyb, T., Lopes, I., Chmielowska-Bąk, J., 2022. Plants oxidative response to nanoplastic. Frontiers in Plant Science, 13.
https://doi.org/10.3389/fpls.2022.1027608
Gao, B., Yao, H., Li, Y., Zhu, Y., 2021a. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil. Environmental Toxicology and Chemistry, 40: 352-365.
https://doi.org/10.1002/etc.4916
Gao, H.H., Liu, Q., Yan, C.R., Mancl, K., Gong, D.Z., He, J.X., Mei, X.R., 2022. Macro-and/or microplastics as an emerging threat effect crop growth and soil health. Resources, Conservation and Recycling, 186: 106549.
https://doi.org/10.1016/j.resconrec.2022.106549
Gao, M., Liu, Y., Song, Z., 2019. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere, 237: 124482.
https://doi.org/10.1016/j.chemosphere.2019.124482
Gao, M.L., Xu, Y.L., Liu, Y., Wang, S.L., Wang, C.W., Dong, Y.M., Song, Z.G., 2021b. Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phytotoxicity in lettuce. Environmental Pollution, 268: 11587.
https://doi.org/10.1016/j.envpol.2020.115870
Gong, W., Zhang, W., Jiang, M., Li, S., Liang, G., Bu, Q., Xu, L., Zhu, H., Lu, A., 2021. Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Science of the Total Environment, 796: 148750.
https://doi.org/10.1016/j.scitotenv.2021.148750
Guo, M., Zhao, F., Tian, L., Ni, K., Lu, Y., Borah, P., 2022. Effects of polystyrene microplastics on the seed germination of herbaceous ornamental plants. Science of the Total Environment, 809: 151100.
https://doi.org/10.1016/j.scitotenv.2021.151100
Hartmann, G.F., Ricachenevsky, F.K., Silveira, N.M., Pita-Barbosa, A., 2022. Phytotoxic effects of plastic pollution in crops: what is the size of the problem? Environmental Pollution, 292: 118420.
https://doi.org/10.1016/j.envpol.2021.118420
Huang, D., Wang, X., Yin, L., Chen, S., Tao, J., Zhou, W., Chen, H., Zhang, G., Xiao, R., 2022. Research progress of microplastics in soil-plant system: Ecological effects and potential risks. Science of the Total Environment, 812: 151487.
https://doi.org/10.1016/j.scitotenv.2021.151487
Hu, B., Guo, P., Han, S., Jin, Y., Nan, Y., Deng, J., He, J., Wu, Y., Chen, S., 2022. Distribution characteristics of microplastics in the soil of mangrove restoration wetland and the effects of microplastics on soil characteristics. Ecotoxicology, 31(7): 1120-1136.
https://doi.org/10.1007/s10646-022-02561-3
Huo, Y., Dijkstra, F.A., Possell, M., Singh, B., 2022. Ecotoxicological effects of plastics on plants, soil fauna and microorganisms: A meta-analysis. Environmental Pollution, 119892.
https://doi.org/10.1016/j.envpol.2022.119892
Kalčíková, G., Žgajnar, G.A., Kladnik, A., Jemec, A., 2017. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environmental Pollution, 230: 1108-1115.
https://doi.org/10.1016/j.envpol.2017.07.050
Khalid, N., Aqeel, M., Noman, A., 2020. Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267: 115653.
https://doi.org/10.1016/j.envpol.2020.115653
Lei, C., Engeseth, N.J., 2021. Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. LWT, 150: 111931.
https://doi.org/10.1016/j.lwt.2021.111931
Li, Q.S., Li, X.Q., Tang, B., Gu, M.M., 2018. Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture. Horticulturae, 4: 35.
https://doi.org/10.3390/horticulturae4040035
Li, Z., Chang, X., Hu, M., Fang, J.K.H., Sokolova, I.M., Huang, W., Xu, E.G., Wang, Y., 2022. Is microplastic an oxidative stressor? Evidence from a meta-analysis on bivalves. Journal of Hazardous Materials, 423: 127211.
https://doi.org/10.1016/j.jhazmat.2021.127211
Li, Z., Li, R., Li, Q., Zhou, J., Wang, G., 2020a. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere, 255: 127041.
https://doi.org/10.1016/j.chemosphere.2020.127041
Li, Z.X., Li, Q.F., Li, R.J., Zhao, Y.F., Geng, J.H., Wang, G.Y., 2020b. Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environmental Science and Pollution Research, 27: 30306-30314.
https://doi.org/10.1007/s11356-020-09349-0
Li, Z.X., Li, Q.F., Li, R.J., Zhao, Y.F., Geng, J.H., Sun, Y.D., Zhou, J.G., Wang, G.Y., 2020c. Physiological response of cucumber seedlings to microplastics and cadmium. Journal of Agro-Environment Science, 39: 973-981.
Lian, Y., Liu, W., Shi, R., Zeb, A., Wang, Q., Li, J., Zheng, Z., Tang, J., 2022. Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. Journal of Hazardous Materials, 435: 129057.
https://doi.org/10.1016/j.jhazmat.2022.129057
Liao, Y.C., Nazygul, J., Li, M., Wang, X.L., Jiang, L.J., 2019. Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat (Triticum aestivum). Environmental Science, 40: 4661-4667.
Luo, X., Zhang, Y.L., Kang, S.C., Gao, T.G., 2021. Research progress of microplastics in the atmosphere. Chinese Journal of Nature, 43: 274-286. (in Chinese)
Ma, C., Wang, M., Zhao, M., Yu, M., Zheng, X., Tian, Y., Sun, Z., Liu, X., Wang, C., 2022. The Δ1-pyrroline-5-carboxylate synthetase family performs diverse physiological functions in stress responses in pear (Pyrus betulifolia). Frontiers in Plant Science, 13: 1066765.
https://doi.org/10.3389/fpls.2022.1066765
Pignattelli, S., Broccoli, A., Renzi, M., 2020. Physiological responses of garden cress (L. sativum) to different types of microplastics. Science of the Total Environment, 727: 138609.
https://doi.org/10.1016/j.scitotenv.2020.138609
Pignattelli, S., Broccoli, A., Piccardo, M., Terlizzi, A., Renzi, M., 2021. Effects of polyethylene terephthalate (PET) microplastics and acid rain on physiology and growth of Lepidium sativum. Environmental Pollution, 282: 116997.
https://doi.org/10.1016/j.envpol.2021.116997
Qiu, Y.F., Zhou, S.L., Zhang, C.C., Zhou, Y.J., Qin, W.D., 2022. Soil microplastic characteristics and the effects on soil properties and biota: A systematic review and meta-analysis. Environmental Pollution, 313: 120183.
https://doi.org/10.1016/j.envpol.2022.120183
Rillig, M.C., Lehmann, A., 2020. Microplastic in terrestrial ecosystems. Science, 368: 1430-1431.
https://doi.org/10.1126/science.abb5979
Roy, T., Dey, T.K., Jamal, M., 2023. Microplastic/nanoplastic toxicity in plants: An imminent concern. Environmental Monitoring and Assessment, 195: 27.
https://doi.org/10.1007/s10661-022-10654-z
Shao, Y.Y., Zhang, F., Liang, Q.X., 2020. Research on microplastic pollution in terrestrial-marine ecosystems. Ecology, Environmental Science, 29: 2118-2129.
Shi, H., Ye, T., Chan, Z., 2014. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry, 74: 99-107.
https://doi.org/10.1016/j.plaphy.2013.11.001
Shi, X., Chen, Z., Wei, W., Chen, J., Ni, B.J., 2023. Toxicity of micro/nanoplastics in the environment: Roles of plastisphere and eco-corona. Soil & Environmental Health, 1: 100002.
https://doi.org/10.1016/j.seh.2023.100002
Sun, H., Lei, C., Xu, J., Li, R., 2021. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. Journal of Hazardous Materials, 416: 125854.
https://doi.org/10.1016/j.jhazmat.2021.125854
Wang, S., Wang, Y., Liang, Y., Cao, W., Sun, C., Ju, P., Zheng, L., 2020. The interactions between microplastic polyvinyl chloride and marine diatoms: Physiological, morphological, and growth effects. Ecotoxicology and Environmental Safety, 203: 111000.
https://doi.org/10.1016/j.ecoenv.2020.111000
Ye, Z.Q., Jiang, X.F., Tang, Q.Y., Li, M., 2021. Toxic effects of polyethylene microplastics on higher plant Vicia faba. Journal of Nanjing University (Natural Hazard Science Edition), 57: 385-392 (in Chinese).
Yu, Z.f., Song, S., Xu, X.L., Ma, Q., Lu, Y., 2021. Sources, migration, accumulation and influence of microplastics in terrestrial plant communities. Environmental and Experimental Botany, 192: 104635.
https://doi.org/10.1016/j.envexpbot.2021.104635
Zeb, A., Liu, W., Meng, L., Lian, J., Wang, Q., Lian, Y., Chen, C., Wu, J., 2022. Effects of polyester microfibers (PMFs) and cadmium on lettuce (Lactuca sativa) and the rhizospheric microbial communities: A study involving physio-biochemical properties and metabolomic profiles. Journal of Hazardous Materials, 424: 127405.
https://doi.org/10.1016/j.jhazmat.2021.127405
Zantis, L.J., Borchi, C., Vijver, M.G., Peijnenburg, W., Di Lonardo, S., Bosker, T., 2023. Nano-and microplastics commonly cause adverse impacts on plants at environmentally relevant levels: A systematic review. Science of the Total Environment, 867: 161211.
https://doi.org/10.1016/j.scitotenv.2022.161211
Zong, H.Y., Liu, J., Guo, X.H., Li, M., Huang, X.L., Wang, F.L., Song, N.N., 2022. Effects of polyethylene microplastics on cadmium absorption and physiological characteristics of peanut seedling. Journal of Agro-Environment Science, 41: 1400-1407.