Abdullah, D. M. and Abdulazeez, A. M., 2021. Machine learning applications based on SVM classification a review. Qubahan Academic Journal., 1(2): 81-90;
https://doi.org/10.1080/17425255.2023.2294939
Ahmadi, S., Ketabi, S., Javan. M. J., 2023. Molecular Descriptors in QSPR/QSAR Modeling. In QSPR/QSAR Analysis Using SMILES and Quasi-SMILES., pp. 25-56. Cham: Springer International Publishing ; https://doi.org/10.1007/s10462-020-09896-5
Bahia, M. S., Kaspi, O., Touitou, M., Binayev, I., 2023. A comparison between 2D and 3D descriptors in QSAR modeling based on bio‐active conformations. Molecular Informatics ., 42(4): 2200186; https://doi.org/10.1039/D2DD00099G
Consonni, V. and Todeschini, R., 2010. Molecular descriptors. Recent advances in QSAR studies: methods and applications : 29-102; doi: 10.6026/97320630013154
Haddouchi, M. and Berrado, A., 2019. A survey of methods and tools used for interpreting random forest. In 2019 1st International Conference on Smart Systems and Data Science (ICSSD), USA, 1-6; DOI: 10.1109/ICSSD47982.2019.9002770
Lombardo, A., Pizzo, F., Benfenati, E., 2014. A new in silico classification model for ready biodegradability, based on molecular fragments. Chemosphere 10(8): 10-16 ;
https://doi.org/10.1016/j.chemosphere.2014.02.073
Chinedu, E., Arome, D., Ameh, F. S., 2013. A new method for determining acute toxicity in animal models. Toxicol. Int., 20(3): 224-226.; DOI: 10.4103/0971-6580.121674
Lu, S. C., Swisher, S. L., Chung, C., 2023. On the importance of interpretable machine learning predictions to inform clinical decision making in oncology. Frontiers in Oncology 13: 1129380 ; https://doi.org/10.3389/fonc.2023.1129380
Mansouri, K., Ringsted, T., Ballabio, D., 2013. Quantitative structure–activity relationship models for ready biodegradability of chemicals. Journal of chemical information and modeling 53(4): 867-878 ; https://doi.org/10.1021/ci4000213
Mauri, A. and Bertola, M., 2022. Alvascience: A new software suite for the QSAR workflow applied to the blood–brain barrier permeability. International Journal of Molecular Sciences., 23(21): 12882 ; https://doi.org/10.3390/ijms232112882
Mauri, A., 2020. alvaDesc: A tool to calculate and analyze molecular descriptors and fingerprints. Ecotoxicological QSARs., 1(32) : 801-820 ; https://doi.org/10.1007/978-1-0716-0150-1_32
Nahm, F. S., 2022. Receiver operating characteristic curve: overview and practical use for clinicians. Korean journal of anesthesiology., 75(1) : 25-36 ; D OI: 10.4097/kja.21209
Moosbauer., Julia, Julia Herbinger, Giuseppe Casalicchio., 2021. Explaining hyperparameter optimization via partial dependence plots. Advances in Neural Information Processing Systems., 34 (2021): 2280-2291 ; doi/10.5555/3540261.3540436
Natekin, A. and Knoll, A., 2013. Gradient boosting machines, a tutorial. Frontiers in neurorobotics 7: 1-21 ; https://doi.org/10.3389/fnbot.2013.00021
Obikee, A. C., Godday, U. E. and Happiness O. Obiora-Ilouno, 2014. Comparison of outlier techniques based on simulated data. Open Journal of Statistics., 4(7): 536-56 ; DOI: 10.4236/ojs.2014.47051
Penso, M., Pepi, M., Fusini, L., 2021. Predicting long-term mortality in TAVI patients using machine learning techniques. Journal of Cardiovascular Development and Disease., 8 (4): 1-14 ; doi: 10.3390/jcdd8040044
Pires, J. R. A., Souza, V. G. L. S, Fuciños, P., Pastrana, L., Fernando, A. L., 2022. Methodologies to assess the biodegradability of bio-based polymers—current knowledge and existing gaps. Polymers 14(7): 1359 ; https://doi.org/10.3390/polym14071359
Qu, K., Xu, J., Hou, Q., Qu, K., Sun, Y., 2023. Feature selection using Information Gain and decision information in neighborhood decision system. Applied Soft Computing., 136: 110100 ; doi/10.1016/j.asoc.2023.110100
Ramraj., S., Uzir, N., Sunil, R., Banerjee, S., 2016. Experimenting XGBoost algorithm for prediction and classification of different datasets. International Journal of Control Theory and Applications., 9 (40): 651-662.
Rigatti, S. J., 2017. Random forest. Journal of Insurance Medicine., 47(1): 31-39 ; DOI: 10.17849/insm-47-01-31-39.1
Rocha, W. F. C. and Sheen, D. A., 2016. Classification of biodegradable materials using QSAR modelling with uncertainty estimation. SAR and QSAR in Environmental Research., 27(10): 799-811 ; https://doi.org/10.1080/1062936X.2016.1238010
Singh., A. K., Bilal, M., Iqbal, H. M. N., 2021. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: Recent progress and future outlook. Science of The Total Environment., 770: 144561 ; DOI: 10.1016/j.scitotenv.2020.144561
Wang., X., Jin, Y., Schmitt, S., Olhofer. M., 2023. Recent advances in Bayesian optimization. ACM Computing Surveys., 55(13): 1-36 ; https://doi.org/10.1145/3582078