Barati, R., Liang, J.T., 2014. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. J Appl Polym Sci, 131, 318-323. https://www.dx.doi.org/10.1002/app.40735
Benech, R.O., Li, X., Patton, D., Powlowski, J., Storms, R., Bournonnais, R., Paise, M. and Tsang, A., 2007. Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-β-1,4-mannanase. Enzyme and Microbial Technology, 41, 740-747. https://doi.org/10.1016/j.enzmictec.2007.06.012
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248–254.
Dang, J.F., Gong, W.X., Zhang, N.X., Chen, Y. and Jiang, Y.S., 2010. Research and application of biological enzyme breaker for fracturing fluid for low pressure gas reservoir in Hongtai. Oilfield Chemistry, 27, 245-249. https://doi.org/10.19346/j.cnki.1000-4092.2010.03.003
Dhawan, S., Kaur, J., 2007. Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol, 27, 197-216. https://doi.org/10.1080/07388550701775919
Egelhofer, V., Bussow, K., Luebbert, C., Lehrach, H. and Nordhoff, E., 2000. Improvements in protein identification by MALDITOF-MS peptide mapping. Analytical Chemistry, 72, 2741-2750.
Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J.P., Claverie, P., Collins, T., D’Amico, S., Dumont, J., Garsoux, G., Georlette, D., Hoyoux, A., Lonhienne, T., Meuwis, M.A. and Feller, G., 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends in Biotechnology, 18, 103-107. https://doi.org/10.1016/S0167-7799(99)01413-4
G´ırio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S. and Bogel-Łukasik, R., 2010. Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775-4800. https://doi.org/10.1016/j.biortech.2010.01.088
Hu, K., Li, C.X., Pan, J., Ni, Y., Zhang, X.Y. and Xu, J.H., 2014. Performance of a new thermostable mannanase in breaking guar-based fracturing fluids at high temperatures with little premature degradation. Applied Biochemistry and Biotechnology, 172, 1215-1226. https://doi.org/10.1007/s12010-013-0484-8
Huang, J.L., Bao, L.X., Zou, H.Y., Che, S.G. and Wang, G.X., 2012. High-level production of a cold-active β-mannanase from Bacillus subtilis Bs5 and its molecular cloning and expression. Molekuliarnaia Genetika, Mikrobiologiia i Virusologiia, 27, 147-153. https://doi.org/10.3103/S0891416812040039
Jiang, Z.Q., Wei, Y., Li, D.Y., Li, L.T., Chai, P.P. and Kusakabe, I., 2006. High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydrate Polymers, 66, 88-96. https://doi.org/10.1016/j.carbpol.2006.02.030
Katrolia, P., Zhou, P., Zhang, P.,Yan, Q.J., Li, Y.N., Jiang, Z.Q. and Xu, H.B., 2012. High level expression of a novel βmannanase from Chaetomium sp. exhibiting efficient mannan hydrolysis. Carbohydrate Polymers, 87, 480-490. https://doi.org/10.1016/j.carbpol.2011.08.008
Kim, D.Y., Ham, S.J., Lee, H.J., Kim, Y.J., Shin, D.H., Rhee, Y. H., Son, K.H. and Park, H.Y., 2011. A highly active endo-β1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme and Microbial Technology, 48, 365-370. https://doi.org/10.1016/j.enzmictec.2010.12.013
Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. https://doi.org/10.1038/227680a0
Liu, J.F., Yang, J., Yang, S.Z., Ye, R.Q. and Mu, B.Z., 2012. Effects of different amino acids in culture media on surfactin variants produced by Bacillus subtilis TD7. Applied Biochemistry and Biotechnology, 166, 2091-2100. https://doi.org/10.1007/s12010-012-9636-5
McCutchen, C.M., Duffaud, G.D., Leduc, P., Petersen, A.R., Tayal, A., Khan, S.A. and Kelly, R.M., 1996. Characterization of extremely thermostable enzymatic breakers (α-1,6-galactosidase and β-1,4-mannanase) from the hyperthermophilic bacterium Thermotoga neapolitana 5068 for hydrolysis of guar gum. Biotechnology and Bioengineering, 52, 332-9. https://doi.org/10.1002/(SICI)1097-0290(19961020)52:2¡332::AID-BIT13¿3.0.CO;2-L
Mclean, D., Agarwal, V., Stack, K., Horne, J. and Richardson, D., 2011. Synthesis of guar gum-graft-poly (acrylamidecodiallyldimethylammonium chloride) and its application in the pulp and paper industry. Bioresources, 6, 4168-4180.
Mendoza, N.S., Arai, M., Kawaguchi, T., Cubol, F.S., Panerio, E.G., Yoshida, T. and Joson, L.M., 1994. Isolation of mannan-utilizing bacteria and the culture conditions for mannanase production. World J Microbiol Biotechnol, 10, 51-54. https://doi.org/10.1007/BF00357563
Morris, J.B., 2010. Morphological and reproductive characterization of guar (Cyamopsis tetragonoloba) genetic resources regenerated in Georgia, USA. Genet Resour Crop Evol, 57, 985-993. https://doi.org/10.1007/s10722-010-9538-8
Mudgil, D., Barak, S. and Khatkar, B.S., 2014. Guar gum: processing, properties and food applications-A review. Adv J Food Sci Technol, 51, 409-418. https://doi.org/10.1007/s13197-011-0522-x
Pan, C., Zhou, J.G., Tian, A., Le, K.Y., Yuan, H.Y., Xue, Y.F., Ma, Y.H. and Lu, H., 2011. High level expression of a truncated β-mannanase from alkaliphilic Bacillus sp. N16-5 in Kluyveromyces cicerisporus. Biotechnology Letters, 33, 565-570. https://doi.org/10.1007/s10529-010-0457-8
Pan, C.S., Xu, S. Y., Zhou, H.J., Fu, Y., Ye, M.L. and Zou, H.F., 2007. Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Analytical and Bioanalytical Chemistry, 387, 193-204. https://doi.org/10.1007/s00216-006-0905-4
Pongsapipatana, N., Damrongteerapap, P., Chantorn, S., Sintuprapa, W., Keawsompong, S. and Nitisinprasert, S., 2016. Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters. Enzyme and Microbial Technology, 89, 39-51. https://www.dx.doi.org/10.1016/j.enzmictec.2016.03.005
Qiao, J.Y., Rao, Z.H., Dong, B. and Cao, Y., 2010. Expression of Bacillus subtilis MA139 β-mannanase in Pichia pastoris and the enzyme characterization. Applied Microbiology and Biotechnology, 160, 1362-1370. https://doi.org/10.1007/s12010-009-8688-7
Rosengren, A., Reddy, S.K., Sjoberg, J.S., Aurelius, O., Logan, D.T., Kolenova, K. and St ´ albrand, H., 2014. An ˚ Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5. Applied Microbiology and Biotechnology, 98, 10091-10104.
Saha, B.C., 2003. Hemicellulose bioconversion. J Ind Microbiol Biotechnol, 30, 279-291. https://doi.org/10.1007/s10295-003-0049-x
Song, J.M., Nam, K.W., Kang, S.G., Kim, C.G. Kwon, S.T. and Lee, Y.H., 2008. Molecular cloning and characterization of a novel cold-active β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus. Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology, 151, 32-40. https://doi.org/10.1016/j.cbpb.2008.05.005
Songsiriritthigul, C., Buranabanyat, B., Haltrich, D. and Yamabhai, M., 2010. Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-β-mannosidase from Bacillus licheniformis in Escherichia coli. Microbial Cell Factories, 9, 1-13.
Srivastava, P.K. and Kapoor, M., 2014. Cost-effective endomannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Preparative Biochemistry, 44, 392-417. https://doi.org/10.1080/10826068.2013.833108
Srivastava, P.K. and Kapoor, M., 2015. Recombinant GH-26 endomannanase from Bacillus sp. CFR1601: Biochemical characterization and application in preparation of partially hydrolysed guar gum. LWT-Food Science and Technology, 64, 809-816. https://doi.org/10.1016/j.lwt.2015.06.059
Srivastava, P.K. and Kapoor, M., 2016. Production, properties, and applications of endo-β-mannanases. Biotechnol Advances, 35, 1-19.
https://doi.org/10.1016/j.biotechadv.2016.11.001
Wan, X.F., Li, Y.M., Wang, X.J., Chen, S.L. and Gu, X.Y., 2007. Synthesis of cationic guar gum-graft-polyacrylamide at low temperature and its flocculating properties. European Polymer Journal, 43, 3655-3661. https://www.dx.doi.org/10.1016/j.eurpolymj.2007.05.037
Wang, C.H., Luo, H.Y., Niu, C.F., Shi, P.J., Huang, H.Q., Meng, K., Bai, Y.G., Wang, K., Hua, H.F. and Yao, B., 2015. Biochemical characterization of a thermophilic β-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Applied Microbiology and Biotechnology, 99, 1217-1228. https://doi.org/10.1007/s00253-014-5979-x
Wang, C.H., Zhang, J.K., Wang, Y., Niu, C.F., Ma, R., Wang, Y.R., Bai, Y.G., Luo, H.Y. and Yao, B., 2016. Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability. Food Chemistry, 197, 474-481. https://doi.org/10.1016/j.foodchem.2015.10.115
Yang, H., Shi, P.J., Lu, H.Q., Wang, H.M., Luo, H.Y., Huang, H.Q., Yang, P.L. and Yao, B., 2015. A thermophilic β-mannanase from Neosartorya fischeri P1 with broad pH stability and significant hydrolysis ability of various mannan polymers. Food Chemistry, 173, 283-289. https://doi.org/10.1016/j.foodchem.2014.10.022
You, J., Liu, J. F., Yang, S.Z. and Mu, B.Z., 2016. Activity and gel breaking performance of a low-temperature-tolerant complex enzyme MEMA10. Oilfield Chemistry, 33, 612-618.
https://doi.org/10.19346/j.cnki.1000-4092.2016.04.009
You, J., Liu, J. F., Yang, S.Z. and Mu, B.Z., 2016. Lowtemperature-active and salt-tolerant β-mannanase from a newly isolated Enterobacter sp. strain N18. Journal of Bioscience and Bioengineering, 121, 140-146.
https://www.dx.doi.org/10.19346/j.cnki.1000-4092.2016.04.009
Zakaria, M.M., Ashiuchi, M., Yamamoto, S. and Yagi, T., 1998. Optimization for β-mannanase production of a psychrophilic bacterium, Flavobacterium sp. Bioscience, Biotechnology, and Biochemistry, 62, 655-660.
Zhang, R., Zhou, J.P., Gao, Y.J., Guan, Y.P., Li, J.J., Tang, X.H., Xu, B., Ding, J.M. and Huang, Z.X., 2015. Molecular and biochemical characterizations of a new low-temperature active mannanase. Folia Microbiologica, 60, 483-492.
Zhou, J.P., Zhang, R., Gao, Y.J., Li, J.J., Tang, X.H., Mu, Y.L., Wang, F., Li, C., Dong, Y.Y. and Huang Z.X., 2012. Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain. Journal of Bioscience and Bioengineering, 113, 568-574. https://doi.org/10.1016/j.jbiosc.2011.12.011
Zhao, W., Zheng, J. and Zhou, H.B., 2011. A thermotolerant and cold-active mannan endo-1,4-β-mannosidase from Aspergillus niger CBS 513.88: Constitutive overexpression and high-density fermentation in Pichia pastoris. & Bioresource Technology, 102, 7538-7547. https://doi.org/10.1016/j.biortech.2011.04.070