Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces, 28(4), 313-318.
Al-Asoufi, A., Khlaifat, A., Tarawneh, A., Alsharafa, K., Al-Limoun, M., & Khleifat, K. (2017). Bacterial Quality of Urinary Tract Infections in Diabetic and Non Diabetics of the Population of Ma'an Province, Jordan. Pakistan journal of biological sciences: PJBS, 20(4), 179-188.
Al-Bakri, A. G., & Mahmoud, N. N. (2019). Photothermal-induced antibacterial activity of gold nanorods loaded into polymeric hydrogel against Pseudomonas aeruginosa biofilm. Molecules, 24(14), 2661.
Al-kafaween, M. A., Hilmi, A. B. M., Al-Jamal, H. A. N., Al-Groom, R. M., Elsahoryi, N. A., & Al-Sayyed, H. (2021). Potential Antibacterial Activity of Yemeni Sidr Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes. Anti-Infective Agents, 19(4), 51-65.
Al-kafaween, M. A., Hilmi, A. B. M., Al-Jamal, H. A. N., Elsahoryi, N. A., Jaffar, N., & Zahri, M. K. (2020). Pseudomonas Aeruginosa and Streptococcus Pyogenes Exposed to Malaysian Trigona Honey In Vitro Demonstrated Downregulation of Virulence Factor. Iranian Journal of Biotechnology, 18(4), 115-123.
Al-kafaween, M. A., Hilmi, A. B. M., Jaffar, N., Al-Jamal, H. A. N., Zahri, M. K., & Jibril, F. I. (2020). Antibacterial and Antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan Journal of Biological Sciences, 13(1), 69 - 76.
Alkafaween, M. A., & Hilmi, A. B. M. (2022). Evaluation of the effect of different growth media and incubation time on the suitability of biofilm formation by Pseudomonas aeruginosa and Streptococcus pyogenes. Applied Environmental Biotechnology, 6(2), 19-26.
Al-kafaween MA, Abu Bakar MH., Hamid Ali NA. (2021). The Beneficial Effects of Stingless Bee Kelulut Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes Planktonic and Biofilm. Tropical Journal of Natural Product Research, 5(10), 1788-1796.
Al-kafaween MA , H. A. N. A.-J., Abu Bakar Mohd Hilmi , Nour Amin Elsahoryi , Norzawani Jaffar, Mohd Khairi Zahri. (2020). Antibacterial properties of selected Malaysian Tualang honey against Pseudomonas aeruginosa and Streptococcus pyogenes. Iranian Journal of microbiology, 12(6), 565-576.
Al-limoun, M., Qaralleh, H. N., Khleifat, K. M., Al-Anber, M., Al-Tarawneh, A., Al-sharafa, K., Al-soub, T. (2019). Culture Media Composition and Reduction Potential Optimization of Mycelia-free Filtrate for the Biosynthesis of Silver Nanoparticles Using the Fungus Tritrichum oryzae W5H. Current Nanoscience15, 1.
Althunibat, O. Y., Qaralleh, H., Al-Dalin, S. Y. A., Abboud, M., Khleifat, K., Majali, I. S., . . . Jaafraa, A. (2016). Effect of thymol and carvacrol, the major components of Thymus capitatus on the growth of Pseudomonas aeruginosa. J Pure Appl Microbiol, 10(1), 367-374.
Arokiyaraj, S., Vincent, S., Saravanan, M., Lee, Y., Oh, Y. K., & Kim, K. H. (2017). Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artificial cells, nanomedicine, and biotechnology, 45(2), 372-379.
Bader, A., Panizzi, L., Cioni, P. L., & Flamini, G. (2007). Achillea ligustica: composition and antimicrobial activity of essential oils from the leaves, flowers and some pure constituents. Central European Journal of Biology, 2(2), 206-212.
Basavaraja, S., Balaji, S., Lagashetty, A., Rajasab, A., & Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43(5), 1164-1170.
Bocate, K. P., Reis, G. F., de Souza, P. C., Junior, A. G. O., Durán, N., Nakazato, G., . . . Panagio, L. A. (2019). Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. International journal of food microbiology, 291, 79-86.
Calderón-Jiménez, B., Johnson, M. E., Montoro Bustos, A. R., Murphy, K. E., Winchester, M. R., & Vega Baudrit, J. R. (2017). Silver nanoparticles: technological advances, societal impacts, and metrological challenges. Frontiers in chemistry, 5, 6.
Chitra, K., & Annadurai, G. (2014). Antibacterial activity of pH-dependent biosynthesized silver nanoparticles against clinical pathogen. BioMed research international, 2014.
Colvin, V. L., Schlamp, M. C., & Alivisatos, A. P. (1994). Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 370(6488), 354-357.
Durán, N., Durán, M., De Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: nanotechnology, biology and medicine, 12(3), 789-799.
Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of nanobiotechnology, 3(1), 1-7.
Elamawi, R. M., Al-Harbi, R. E., & Hendi, A. A. (2018). Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian journal of biological pest control, 28(1), 1-11.
Garg, H. (2015). An approach for solving constrained reliability-redundancy allocation problems using cuckoo search algorithm. Beni-Suef University Journal of Basic and Applied Sciences, 4(1), 14-25.
Gentile, A., Ruffino, F., & Grimaldi, M. G. (2016). Complex-morphology metal-based nanostructures: Fabrication, characterization, and applications. Nanomaterials, 6(6), 110.
Guilger-Casagrande, M., & Lima, R. d. (2019). Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in bioengineering and biotechnology, 7, 287.
Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., . . . Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and surfaces B: Biointerfaces, 74(1), 328-335.
Haggag, E. G., Elshamy, A. M., Rabeh, M. A., Gabr, N. M., Salem, M., Youssif, K. A., . . . Abdelmohsen, U. R. (2019). Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. International journal of nanomedicine, 14, 6217.
Huang, J., Zhan, G., Zheng, B., Sun, D., Lu, F., Lin, Y., . . . Li, Q. (2011). Biogenic silver nanoparticles by Cacumen platycladi extract: synthesis, formation mechanism, and antibacterial activity. Industrial & engineering chemistry research, 50(15), 9095-9106.
Ingole, A. R., Thakare, S. R., Khati, N., Wankhade, A. V., & Burghate, D. (2010). Green synthesis of selenium nanoparticles under ambient condition. Chalcogenide Lett, 7(7), 485-489.
Jaidev, L., & Narasimha, G. (2010). Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids and surfaces B: Biointerfaces, 81(2), 430-433.
Jarrar, Y., Al-Doaiss, A., Alfaifi, M., Shati, A., Al-Kahtani, M., & Jarrar, B. (2020). The influence of five metallic nanoparticles on the expression of major drug-metabolizing enzyme genes with correlation of inflammation in mouse livers. Environmental Toxicology and Pharmacology, 80, 103449.
Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and surfaces B: Biointerfaces, 65(1), 150-153.
Khandel, P., & Shahi, S. K. (2018). Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. Journal of Nanostructure in Chemistry, 8(4), 369-391.
Khleifat, K., Abboud, M., Al-Shamayleh, W., Jiries, A., & Tarawneh, K. (2006). Effect of chlorination treatment on gram negative bacterial composition of recycled wastewater. Pak. J. Biol. Sci, 9, 1660-1668.
Khleifat, K. M., Abboud, M. M., Al-Mustafa, A. H., & Al-Sharafa, K. Y. (2006). Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of β-galactosidase in Enterobacter aerogenes. Current microbiology, 53(4), 277-281.
Khleifat, K. M., Halasah, R. A., Tarawneh, K. A., Halasah, Z., Shawabkeh, R., & Wedyan, M. A. (2010). Biodegradation of linear alkylbenzene sulfonate by Burkholderia sp.: Effect of some growth conditions. Int J Agr Biol, 12, 17-25.
Khleifat, K. M., Tarawneh, K. A., Ali Wedyan, M., Al-Tarawneh, A. A., & Al Sharafa, K. (2008). Growth kinetics and toxicity of Enterobacter cloacae grown on linear alkylbenzene sulfonate as sole carbon source. Current microbiology, 57(4), 364-370.
Klaus, T., Joerger, R., Olsson, E., & Granqvist, C.-G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611-13614.
Lee, S. H., & Jun, B.-H. (2019). Silver nanoparticles: synthesis and application for nanomedicine. International journal of molecular sciences, 20(4), 865.
Ottoni, C. A., Simões, M. F., Fernandes, S., Dos Santos, J. G., Da Silva, E. S., de Souza, R. F. B., & Maiorano, A. E. (2017). Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express, 7(1), 1-10.
Qaralleh, H., Khleifat, K. M., Al-Limoun, M. O., Alzedaneen, F. Y., & Al-Tawarah, N. (2019). Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungi Tritirachium oryzae W5H with essential oil of Centaurea damascena to enhance conventional antibiotics activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(2), 025016.
Rahimi, G., Alizadeh, F., & Khodavandi, A. (2016). Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial activity against Escherichia coli and Staphylococcus aureus. Tropical Journal of Pharmaceutical Research, 15(2), 371-375.
Riaz, A., Khan, S. U.-D., Zeeshan, A., Khan, S. U., Hassan, M., & Muhammad, T. (2021). Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. Journal of Thermal Analysis and Calorimetry, 143(3), 1997-2009.
Sastry, M., Ahmad, A., Khan, M. I., & Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current science, 162-170.
Satalkar, P., Elger, B. S., & Shaw, D. M. (2016). Defining nano, nanotechnology and nanomedicine: why should it matter? Science and engineering ethics, 22(5), 1255-1276.
Sergeev, G. B., & Shabatina, T. I. (2008). Cryochemistry of nanometals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, 18-22.
Singh, R., Wagh, P., Wadhwani, S., Gaidhani, S., Kumbhar, A., Bellare, J., & Chopade, B. A. (2013). Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International journal of nanomedicine, 8, 4277.
Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 275(1), 177-182.
Sosa, I. O., Noguez, C., & Barrera, R. G. (2003). Optical properties of metal nanoparticles with arbitrary shapes. The Journal of Physical Chemistry B, 107(26), 6269-6275.
Tarawneh, K. A., Al‐Tawarah, N. M., Abdel‐Ghani, A. H., Al‐Majali, A. M., & Khleifat, K. M. (2009). Characterization of verotoxigenic Escherichia coli (VTEC) isolates from faeces of small ruminants and environmental samples in Southern Jordan. Journal of basic microbiology, 49(3), 310-317.
Tarawneh, O., Alwahsh, W., Abul-Futouh, H., Al-Samad, L. A., Hamadneh, L., Abu Mahfouz, H., & Fadhil Abed, A. (2021). Determination of Antimicrobial and Antibiofilm Activity of Combined LVX and AMP Impregnated in p (HEMA) Hydrogel. Applied Sciences, 11(18), 8345.
Xu, Z. P., Zeng, Q. H., Lu, G. Q., & Yu, A. B. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61(3), 1027-1040.
Yousef, I., Oran, S., Alqaraleh, M., & Bustanji, M. (2021). Evaluation of cytotoxic, antioxidant and antibacterial activities of Origanum dayi, Salvia palaestina and Bongardia chrysogonum plants growing wild in Jordan. Tropical Journal of Natural Product Research, 5(1), 66-70.