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1. Introduction

xperimental measurements from civil infra-
structures, including buildings, bridges, off-
shore structures, wind turbines, and industrial 

facilities are often used to obtain the modes of these 
structures. The modes are useful in structural perfor-
mance evaluation[1], finite element model updating[2-4], 
and model-based structural health monitoring[5,6]. A 
number of methodologies have been developed in the 
past to optimize the location of sensors in order to 
maximize the information contained in the measure-

ments for identifying the structural modes. Among 
them, methods based on information theory are used 
to make rational decisions consistent with the infor-
mation provided by the measurements. Non-info-
rmation based methods have also been developed. A 
review of a number of non-information based methods 
can be found in a thesis by Li[7].  

This work concentrates on optimal sensor place-
ment design methods for modal identification based 
on information theory. In the past, notable contribu-
tions to the sensor placement problem for modal iden-
tification have been provided by the effective indepen-
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dence (EFI) method[8] for uniaxial and triaxial sen-
sors[9,10]. Information theory measures, based on scalar 
measures of the Fisher information matrix (FIM)[11,12] 
and on information entropy[13–15], proposed in the past 
for structural parameter estimation problems, have been 
extended to be used for modal identification[16] as well. 
An optimal sensor placement design for modal identi-
fication based on FIM was proposed by Kammer[17]. 
The information entropy measure for parameter esti-
mation introduced by Papadimitriou et al.[13], was ex-
tended by Papadimitriou [18] to obtain useful expres-
sions of the information entropy as a function of the 
number of sensors, and was applied to modal identifi-
cation problems[16]. In particular, the information en-
tropy measures the uncertainty in the posterior distri-
bution of the model parameters to be identified. The 
posterior distribution is obtained from a Bayesian 
analysis that makes use of the prior distribution of the 
model parameters. Up to now, the effect of the prior 
distribution in the optimal design has not been ade-
quately explored.  

When applying the EFI and information entropy 
techniques to dense finite element models, the prob-
lem of sensor clustering is manifested. The source of 
the problem is the failure to take into account the re-
dundant information provided from neighborhood 
sensor locations. The problem was adequately reso-
lved using spatially correlated prediction error models 
in the Bayesian formulation to exclude redundant in-
formation from neighboring sensors[16]. Stephan[19] has 
also effectively tackled the issue of information redun-
dancy between sensors by introducing a measure of 
information redundancy.  

Optimization algorithms have also been proposed 
to find the optimal sensor locations. For structural 
parameter estimation problems multiple local/global 
optima make the solution of the optimization problem 
very challenging[20]. Heuristic algorithms such as 
the backward and forward sequential sensor placement 
(BSSP and FSSP) algorithms have been proposed to 
drastically reduce the computational effort[17,18]. The 
optimal sensor placement strategies based on the in-
formation entropy and FSSP was applied to bridge, 
towers, and timber structures for optimizing the loca-
tion of uniaxial and triaxial sensors[21-23]. These algo-
rithms are shown to be quite accurate. However, the 
use of the FSSP algorithm requires that identifiability 
issues are resolved for small number of sensors. 
Unidentifiability issues arise from the aforementioned 
methods for modal identification when the number of 

sensors placed in the structure is less than the number 
of identified modes. This is due to the fact that the 
FIM becomes singular. Yuen and Kuok[24] noted that 
introducing non-uniform priors in the Bayesian poste-
rior used in the information entropy measures resolves 
the problem. For uniform priors, Papadimitriou and 
Lombaert[16] obtained reasonable sensor placement 
design by excluding the zero eigenvalues from the 
product of the eigenvalues of the FIM used for com-
puting the determinant of the FIM that is required in 
information entropy formulations.  

In this work we revisit the problem of sensor 
placement for modal identification. We formulate the 
optimal experimental design based on expected utility 
functions[25] and apply it to the case of optimizing the 
location of sensors for a real bridge. We use as utility 
function the relative entropy or, equivalently, the 
Kullback-Leibler divergence between the prior and the 
posterior distribution of model parameters[26]. For 
uniform or Gaussian priors and for models for which 
the output quantities of interest (QoI) depend linearly 
on the model parameters to be identified, as it is the 
case of modal identification, we demonstrate that the 
expected utility function is directly related to the mi-
nus of the information entropy of the parameters to be 
estimated plus a constant that does not depend on the 
sensor locations. Thus, the optimal design results in 
maximizing the expected log determinant of the sum 
of the FIM and the prior Hessian. As a result, with the 
aid of the information contained in the prior PDF of 
the model parameters, the combined matrix (FIM and 
prior Hessian) is non-singular for non-uniform priors 
and the optimal sensor placement problem can be car-
ried out also for the case where the number of sensors 
is less than the number of modes.  

A novelty in this work is to study the effect of 
Gaussian prior uncertainties on the optimal sensor 
design. For this, an insightful analytical expression is 
developed that shows the effect the prior uncertainties 
have on the optimal design. The importance of spatial 
correlation in the prediction error is also pointed out 
as the means of avoiding sensor clustering phenomena 
for finite element models used to simulate civil infra-
structures.  

Theoretical developments are demonstrated by de-
signing the optimal locations of a number of sensors 
for a 537 m long concrete bridge using a dense finite 
element mesh of approximately 830,000 degrees of 
freedom (DOF). The optimization is formulated in the 
physical continuous space of the design variables. 
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This avoids the large discrete design space that arises 
from the extremely large number of possible nodal 
positions due to dense FE meshes. Multiple local op-
tima are revealed that make the optimization problem 
very challenging. It is demonstrated that the computa-
tionally efficient heuristic FSSP algorithm provides 
accurate solutions when compared to stochastic algo-
rithms such as the covariance matrix adaptation 
(CMA-ES)[27] able to estimate the global optimum 
with substantially higher computational cost. Useful 
results are obtained which help guide experimentalists 
as to how the proposed method can be used for de-
signing the optimal sensor locations in practical ap-
plications. In particular, we demonstrate that designs 
are also obtained for the very important case of num-
ber of sensors which are less than the number of 
modes by using the information contained in the prior 
distribution. In particular, this is important in design-
ing the location of the reference sensors in a multiple 
sensor configuration set up experiment conducted 
with limited number of reference and roving sensors 
in order to obtain the modal frequencies and reliably 
assemble the mode shapes from multiple setups. The 
effectiveness of the methodology is illustrated by de-
signing the optimal location of two reference sensors 
(one transverse and one vertical) for the bridge. Final-
ly, we draw attention to the sensor clustering issue and 
propose methods to avoid it and finally we show the 
effect of uncertainty in the prior distribution on the 
sensor placement designs. 

2. Bayesian Parameter Estimation 

The Bayesian framework for the estimation of the par-
ameters of finite element models of structures based on 
experimental data is first outlined and the results are 
used in the optimal experimental design formulation 
presented in Section 3. Consider a model of a stru-
ctural system and let NR θθ ∈  be the vector of model 
parameters to be estimated using a set of measured 
data 0( ) Ny y Rδ≡ ∈  of output quantities that depend 

on experimental design variables δ , where 0N  is the 

number of sensors. Let 0( ; ) ( ) Ng A Rθ δ δ θ= ∈  be the 

vector of the values of the output quantities predict-
ed by a structural model for specific values of the pa-
rameter set θ , where it is assumed that there is a lin-
ear relationship between the output quantity of interest 
(QoI) and the parameter set θ  to be identified from 

the experiments, and 0( ) N NA R θδ ×∈  depends on the 
structure of the model and the experimental design 
variables δ . The design variables are related to the 
location of sensors placed in a structure. The location 
vector δ  contains the coordinates of the sensors with 
respect to a coordinate system.  

The following prediction error equation is intro-
duced to model the discrepancy between the meas-
urements and the model predictions 
 ( ; ) ( )y g e A eθ δ δ θ= + = +   (1) 

where e  is the additive prediction error term due to 
model and measurement error. The prediction error e  
is usually modeled as a Gaussian vector, whose mean 
value is equal to zero and its covariance is equal to 

0 0( ; ) N NRδ σ ×Σ ∈ , where σ  contains the parameters 
that define the correlation structure ( ; )δ σΣ  of the 
prediction error. Applying the Bayesian theorem[2], the 
posterior probability density function (PDF) of the 
model parameter set θ , given the measured data y , 

takes the form  

( ) [ ]0 1/2/2

( | , , )

1 1exp ( ; , , )  
22 det ( ; )

( )N

p y

c J y

θ σ δ

θ σ δ θ
π δ σ

π

=

 −  Σ
(2)

 

where 
 1( ; , , ) [ ( ) ] ( ; )[ ( ) ]TJ y y A y Aθ σ δ δ θ δ σ δ θ−= − Σ −  (3) 

quantifies the discrepancy between the measured and 
model predicted quantities, ( )θπ  is the prior di-
stribution for θ , and c  is a normalization constant 
guaranteeing that the posterior PDF integrates to one.  

Due to the linear relationship between the output 
QoI and the model parameters, the function ( ; ,J yθ  

, )σ δ is quadratic in θ . Assuming a uniform prior 
with wide enough bounds or a Gaussian prior, the 
posterior PDF for the model parameters θ  is Gauss-

ian, denoted by ˆ( ; , )N Cθ θ , where ˆˆ ( ; , )yθ θ σ δ≡  is 

the most probable value obtained by minimizing the 
function ln ( | , , )p yθ σ δ− , i.e.,  

 ˆ( ; , ) arg min[ ( ; , , ) ln ( )]y J y
θ

θ σ δ θ σ δ π θ= −  (4) 

and the covariance matrix ˆ( ; , , )C C yθ σ δ=  equals to 

the inverse of the Hessian of ln ( | , , )p yθ σ δ− , i.e.,  
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[ ln ( | , , )] ( , )T
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p y Q Qθ θ π

θ σ δ

θ σ δ δ σ

− =

∇ ∇ − = +
 (5) 

evaluated at the most probable value ˆ( ; , )yθ σ δ , 

where ( , )LQ δ σ  is the FIM obtained from  

 
1

1( , ) ( ; , , )
2

( ) ( ; ) ( )

T
L

T

Q J y

A A

θ θδ σ θ σ δ

δ δ σ δ−

= ∇ ∇ =

Σ
 (6) 

to be independent of θ  and the experimental values 

y , and ( ) [ ln ( )]TQπ θ θθ π θ= ∇ ∇ −  is the zero matrix 

0Qπ =  for uniform prior and the constant matrix 
1Q Sπ
−=  for a Gaussian prior PDF with covariance 

matrix S .  The covariance matrix C  of the Gauss-
ian posterior PDF does not depend on the values of 
the parameters θ  and the experimental data y . The 

dependence on the experimental design variables δ  
comes from the information matrix ( , )LQ δ σ .  

3. Bayesian Optimal Experimental Design 

3.1 Expected Utility Function 

The expected utility function has been introduced by 
Lindley[25] to measure the information contained in the 
experimental data for estimating the parameters of the 
model. The expected utility function has the form  

 ( ) ( ; , , ) ( , , | )   U u y p y d dy dδ δ θ σ θ σ δ θ σ
Σ ϒΘ

= ∫ ∫ ∫   (7) 

where ( ; , , )u yδ θ σ  is the utility function given a par-

ticular value of the model parameter set θ , the out-
come y  from the experiment, and the parameter set 

σ , ( , , | ) ( | , , ) ( | , ) ( | )p y p y p y pθ σ δ θ σ δ σ δ σ δ= , 

( | , , )p yθ σ δ  is the posterior uncertainty in the model 

parameters given the outcome y , ( | , )p y σ δ  is the 

uncertainty in the data, and ( | ) ( )p σ δ π σ=  quanti-
fies the prior uncertainty in the parameter set σ . 
Herein, the expected utility function in (7) has been 
extended to include the uncertainties in the model 
prediction error parameters σ  by taking the expecta-
tion over the parameter space σ  as well.  

Based on information theory, the utility function 
can be chosen to be the relative entropy or the 
Kullback-Leibler divergence[25,26] 

 
( | , , )

( ; , , ) ( | , , ) ln 
( )

p y
u y p y

θ σ δ
δ θ σ θ σ δ

π θ
=   (8) 

between the prior and posterior PDF of the model pa-
rameters θ  given an outcome y  obtained from an 

experimental design δ . Substituting (8) into (7), one 
has that the expected utility function is an average of 
the K-L divergence over all possible values of the 
model parameters θ  as they are inferred from the 
data, all the possible outcomes y  of the experiment, 

and all possible values of the model prediction error 
parameters σ . For Gaussian posterior PDF in θ  
that does not depend on the data y , the inner double 

integral in the expected utility function simplifies 
considerably[28] and the expected utility function takes 
the form  

 ( ) ( , ) ( ) U H d cδ δ σ π σ σ= − −∫   (9) 

where  

 1

( , )
1 1[ln(2 ) 1] ln det[ ( ; ) ]
2 2 L

H

N Q Sθ

δ σ

π δ σ −

=

+ − +
  

(10)
 

is the information entropy of the model parameters θ  
given σ , while c  is a quantity that does not depend 
on the design variables δ  so that it can be treated as 
constant. This integral in the right-hand-side of (9) 
represents the robust measure of the information en-
tropy over all possible values of the prediction error 
parameters quantified by the prior PDF ( )π σ . For a 
small number (one or two) of parameters in σ , the 
integral can be carried out using a numerical integra-
tion algorithm. For the sake of simplicity, in this work 
the values of σ  are assumed known (deterministic). 
The utility function then takes the form 
 ( ) ( , )U H cδ δ σ= − −   (11) 

It can be seen that the expected relative information or 
expected K-L divergence has a direct connection to 
the robust information entropy proposed by Papadi-
mitriou et al.[13] and extended by Yuen and Kuok[24] 
for non-uniform distributions.  

3.2 Optimal Designs 

The optimal experimental design problem is formu-
lated as finding the values optδ  of the design variables 
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δ  that maximize the utility function ( )U δ  or, equiva-
lently, minimize the information entropy ( , )H δ σ , i.e.,  

 arg max ( ) arg min ( , )opt U H
δ δ

δ δ δ σ= =  (12) 

Optimal experimental design problems involving the 
design of the position of sensors often result in multi-
ple local and global solutions. This will be also evi-
dent in the results presented in the application section. 
Also the gradient of the objective function with re-
spect to the design variables in most cases of practical 
interest cannot be evaluated analytically. To avoid 
premature convergence to a local optimum and the 
evaluation of sensitivities of the utility function with 
respect to the design variables, stochastic optimization 
algorithms can be used to find the optimum. Herein 
the CMA-ES algorithm[27] is used for solving the op-
timization problem, requiring only evaluation of the 
objective function at different values of the design 
variables. For this, the problem is formulated as a 
continuous optimization problem where the design 
variables are related to the coordinates of the sensors 
along the physical domain of the structure. To account, 
however, of curved and disconnected one-dimensional 
or two-dimensional domains, as well as to take into 
account the different types of sensors (vertical or 
transverse) that can be placed along the curved do-
main, a mapping technique can be used to map the 
physical design space into a regular one-dimensional 
parent domain. The optimization is then conveniently 
carried out in the parent domain. The method will be 
illustrated for one-dimensional curved domains in the 
application section.   

Heuristic algorithms have also been proposed to 
provide sub-optimal solutions. Notable are the for-
ward and backward sequential sensor placement algo-
rithms (FSSP and BSSP) in which the optimization is 
carried out sequentially. In the FSSP algorithm[18] the 
optimization is carried out sequentially for a single 
sensor, say the 1i +  sensor, given that i  sensors 
have already been placed in their optimal locations. 
This procedure is repeated for 01, ,i N=  , where 

0N  is the total number of sensors to be placed in the 
structure. The heuristic algorithms have been shown 
to be effective and provided for several problems near 
optimal solutions[16]. The FSSP algorithm is used here 
for investigating its effectiveness for the optimal sen-
sor placement problem for modal identification.  

3.3 Properties of the Expected Relative Entropy or 
K-L Divergence 

The robust information entropy involved in the ex-
pected utility function in (9) has exactly the same 
structure as the information entropy derived asymp-
totically by Papadimitriou[18] for nonlinear models. 
Based on the structure of the information entropy 
measure in (10) it was shown analytically that the in-
formation entropy follows certain properties[16,18]. Us-
ing the relationship (9) or (11) between the expected 
K-L divergence and the information entropy, one can 
easily extend the validity of these properties to the 
expected utility function. Specifically, following Pa-
padimitriou’s paper[18], one can confirm that the ex-
pected utility function for a given number of sensors 
placed in the structure increases when one or more 
additional sensors are placed in the structure. As a 
result, the maximum value of the expected utility 
function attained for a certain number of sensors is a 
non-decreasing function of the number of sensors. 
Thus the selection of the optimal number of sensors 
is based only on the level of the information that one 
can afford loosing when stops placing additional sen-
sors in the structure. In addition, spatially correlated 
prediction error models avoid the problem of the re-
dundant information that is usually provided by 
neighborhood sensors[16]. This is true when the dis-
tance of the sensors is less than a characteristic length 
of the contributing mode. In this case the spatial cor-
relation length in spatially correlated prediction error 
models should be selected based on the characteristic 
length of the highest contributing mode. Spatially un-
correlated prediction error models fail to properly 
consider the redundant information and should be 
avoided since otherwise they result in sensor clustering.  

4. Optimal Sensor Placement for Modal Ident-
ification 

4.1 Formulation for Modal Identification 

The optimal experimental design methodology is next 
implemented in structural dynamics for optimally 
placing the sensors in the structure for modal identifi-
cation. Considering a linear finite element model of a 
structure, the equations of motion are given by  
 Mu Cu Ku f+ + =

    (13) 

where M , C  and Rn nM ×∈  are the mass, damping 
and stiffness matrices, respectively, nu R∈  is the di-
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splacement vector and f  is the forcing vector. Using 
modal analysis and assuming classically damped mo-
des, the response displacement and acceleration vec-
tors are given by u ξ= Φ  and u ξ= Φ  , respectively, 

where 1[ , , ] Rn m
mφ φ ×Φ = ∈  is the matrix of mode 

shapes involving m  contributing modes ( m n≤ ) 
that can be obtained by solving the eigenvalue prob-
lem K MΦ = Λ Φ , Λ  is the diagonal matrix of ei-
genvalues, 1[ , , ]T m

m Rξ ξ ξ= ∈  is the vector of 
modal coordinates satisfying 
 22 T

r r r r r r r fξ ζ ω ξ ω ξ φ+ + =    (14) 

1, ,r m=  , and rζ  is the modal damping ratio. The 
strain vector is given by a similar expression Eε ξ= , 

where E  depends through the finite element model-
ing on the elements in the mode shape matrix Φ .  

The problem of estimating the modal coordinate 
vector ξ  or ξ  using displacement/strain or accel-

eration measurements is investigated in this work. The 
modal coordinates ξ  or ξ  contain the modal prop-
erties (modal frequencies, modal damping ratios, par-
ticipation factors). The objective in modal identifica-
tion is to place sensors (displacement, acceleration 
and/or strain sensors) so that the information con-
tained in the measured data is sufficient to estimate 
the modal coordinate vectorsξ  or ξ , depending on 

the sensor type used. Introducing the parameter set θ   

to be either ξ  or ξ  and denoting by 0( ; ) Ng Rθ δ ∈  
the response quantity that is measured by the sensors, 
one has the following equation between the modal 
model predictions and the parameter set θ  
 ( ; ) ( ) ( )g Lθ δ δ θ δ θ= Φ = Φ   (15) 

where the matrix 0( ) N nL Rδ ×∈  is the observation 
matrix and maps the n  model DOF to the 0N  mea-
sured positions. The matrix ( )L δ  depends on the 
location vector δ  defining the locations of the sen-
sors in the structure. If the measured positions coin-
cide with the DOF of the model then the matrix ( )L δ  
is comprised of zeros and ones. For the general case 
for which the measured locations do not coincide with 
the DOF of the FE model, the matrix ( )L δ  depends 
on the interpolation scheme used to obtain the re-
sponse within a finite element in terms of the finite 

element nodal responses. The above formulation al-
lows sensors placed in any point in the structure, not 
only at nodal points. Also it gives the flexibility to 
covert the optimization problem for estimating the 
design variables to a continuous optimization problem 
over the physical domain of the structure. For strain 
measurements the aforementioned analysis is the same 
provided that the mode shape matrix Φ  is re-
placed by the matrix E .  

The model equation in (15) is the same as the one 
used in (1) so that the expected utility function (9) or 
(11) applies with the FIM given by  
 1( ; ) [ ( ) ] ( ; )[ ( ) ]T

LQ L Lδ σ δ δ σ δ−= Φ Σ Φ  (16) 
in terms of the mode shape components at the meas-
ured locations. 

Based on the form (16), and using the dimensions 
of the matrices 0[ ( ) ] m NTL Rδ ×Φ ∈ , 0 01( ; ) N NRδ σ ×−Σ ∈  

and 0( ) N mL Rδ ×Φ∈  in (16), a non-singular FIM ma-
trix ( ; )LQ δ σ  is obtained only if the number of sen-
sors 0N  is at least equal to the number of contrib-
uting modes m  ( 0N m≥ ). For 0N m< , the matrix 

( ; )LQ δ σ  in (15) is by construction singular and for 
uniform prior PDF the determinant of the combined 
matrix 1( ; )LQ Sδ σ −+  in (10) will be zero for any 
sensor configuration. Thus, for 0N m<  the optimal 
sensor location problem cannot be performed for uni-
form prior PDF. This means that the information con-
tent in the measured data and the prior is not sufficient 
to estimate all the parameters simultaneously.  

The Bayesian optimal experimental design formu-
lation yields a nonsingular matrix for 0N m<  only if 
the prior is non-uniform distribution. The non-uniform 
prior, say Gaussian, yields a Hessian matrix 1S−  that 
is added to the Fisher information matrix ( ; )LQ δ σ  

and makes the combined matrix 1( ; )LQ Sδ σ −+  non- 
singular. The information matrix ( ; )LQ δ σ  in (16) 
has exactly the same form as the one proposed by 
Yuen[4] for designing the optimal sensor locations us-
ing the EFI algorithm. The difference of the present 
Bayesian formulation to the EFI algorithm is in the 
use of the prior information for the model parameters 
which permits the design of optimal sensor locations 
for the case of number of sensors which is less than 
the number of modes. The contribution from the prior 
is the result of the application of the Bayesian optimal 
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experimental design proposed herein based on opti-
mizing the expected K-L divergence. Alternatively, 
Yuen and Kuok[24] have also proposed a non-uniform 
prior on the information entropy measure in order to 
solve this unidentifiability problem. For uniform prior 
and unidentifiable case, Papadimitriou and 
Lombaert[16] proposed the sum of the log of the non-
zero eigenvalues in the FIM to be maximized instead 
of the sum of the log of all eigenvalues. Herein these 
results are generalized to incorporate prior uncertainty 
in the parameter estimates. This procedure allows to 
systematically place the sensors optimally in the 
structure even for the unidentifiable case that arises 
for a small number of sensors.  

4.2 Effect of Prior Uncertainty 

Next a diagonal covariance 2 2
1( , , )mS diag s s=   for 

the Gaussian prior is assumed and the effect of the 
values of the variances is examined. These variances 
control the prior uncertainty in the values of the model 
parameters. A theoretical result is provided that shows 
the effect of the assigned prior uncertainties on the 
optimal design.  

For simplicity, the case of optimally placing one 
sensor is considered first and then generalized for the 
multiple sensor case. In the case of a single sensor, the 
FIM reduces to the form 2( ; ) T

L i iQ δ σ σ ϕ ϕ−= , where 

1 2[ , , , ]Ti i i imϕ = Φ Φ Φ  is a vector of dimension m  
that consists of the values of each mode shape at the 
sensor location denoted here as i . Note that for one 
sensor the prediction error covariance ( ; )δ σΣ  is sc-

alar with 2( ; )δ σ σΣ = . Using the following known re-
sult for a square matrix B  and two vectors u  and v   

 1( ) (1 ) (B)T Tdet uv v u tB B de−= ++   (17) 

the 1det det[ ( ; ) ]LQ Q Sδ σ −≡ +  in (9) takes the form  

 

2 1

1

2 2

2

2 1

1

det[ ]

]

[ ]

[1 ( )

[1 ( )]

T
i i

T
i i

m

k ik
k

det

det

d

Q S

S S

s et S

σ ϕ

ϕσ

σ

ϕ

ϕ

− −

−−

−−

=

= =

+ =

+

+

Φ∑

  

(18)

 

Note that the variance 2
ks  of the k -th parameter 

(modal coordinate) weights the contribution in the 
sum of the value of the k -th mode shape at the sensor 
location. The higher the value of the variance 2

ks , the 
higher the contribution of the k -th mode shape on the 

det[ ]Q . So it is evident that the optimal design will 
give preference to the modes that have higher prior 
uncertainty, i.e., higher 2

ks  values.  
Next we complete the proof for the general case of 

arbitrary number of 0N  sensors. For this, we use the 
following known result 
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Setting for simplicity ( )L δΨ = Φ  and using (16) and 
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 1 1det[ ]det[ ( ; )]S δ σ− −Σ  (20) 
where ( )kψ δ  is the k -th mode shape evaluated at 
the sensor locations, ( )kψ δ  is the unit-normalized 

mode shape, 2|| ( ) ||kψ δ  is the Euclidean norm square 
of the mode shape.  

Equation (18) is a special case of equation (20) 
when only one sensor is used and Ψ  becomes a row 
vector and its columns become scalars. In the multiple 
sensor case we are dealing with a sum of rank-one 
matrices over the model parameters, where each rank- 
one matrix ( ) ( )T

k kψ δ ψ δ  is formed from the k -th 
mode shape ( )kψ δ , weighted by the correspondding 

prior variance 2
ks  of that mode. So we see again that, 

similarly to the one sensor case, the Gaussian prior 
variance 2

ks  acts as weighting factor, this time by 

giving greater weight to the matrix ( ) ( )T
k kψ δ ψ δ  re-

lated to the k -th mode. The variance 2
ks  of the 

k -th mode weights the contribution in the sum of the 
value of the k -th rank-one matrix formed from the 
k -th mode shape that is evaluated at the sensor loca-
tions. The higher the value of the variance 2

ks , the 
higher the contribution of the rank-one matrix of the 
k -th mode shape on the det[ ]Q . So the optimal de-
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sign of sensor locations again gives preference to the 
modes that are assigned by a user to have higher prior 
uncertainty.  

It should be noted that the idea of favoring one or 
more modes in the design of the optimal sensor con-
figuration by appropriately selecting the prior vari-
ances can be useful in model updating and damage 
detection applications. Specifically, in damage detec-
tion and localization the proposed optimal sensor 
placement design can be used to increase the infor-
mation about the damage location and size contained 
in the measured data by favoring, for example, local 
modes known to be more sensitive to local damage. 
To avoid reducing the robustness of the proposed op-
timal sensor placement algorithm for identifying the 
least favored modes, one may choose to optimally 
allocate a fraction of the available sensors in an effort 
to favor a small number of the contributing modes, 
ensuring that the optimal placement of the rest of the 
sensors maintain adequate levels of robustness.   

5. Application 

The proposed methodology is used to optimize the 
location of acceleration sensors placed at the deck 
level of the Metsovo Bridge. Numerical results are 
shown for up to 30 sensors for the spatially uncorre-
lated and spatially correlated prediction error models. 
The effect of the spatial correlation as well as the ef-
fect of the selection of the uncertainty in the prior dis-
tribution on the optimal designs is also investigated. 
Finally, the optimal design of a small number of ref-
erence sensors to be used as common sensors in mul-
tiple configuration setups is illustrated.  

5.1 Bridge Description and FE Model 

The Metsovo bridge of Egnatia Motorway, schemati-
cally shown in Figure 1, is crossing the deep ravine of 
Metsovitikos river, 150 m over the riverbed. This is 
the highest bridge of the Egnatia Motorway, with the 
height of the tallest pier equal to 110 m. The total 
length of the bridge is 537 m. The bridge has 4 spans 
of length 44.78 m, 117.87 m, 235 m, 140 m and 3 
piers of which M1 (45 m) supports the boxbeam su-
perstructure through pot bearings (movable in both 
horizontal directions), while M2 (110 m) and M3 (35 
m) piers connect monolithically to the structure.  

A detailed FE model of the bridge is created using 
3-dimensional tetrahedron quadratic Lagrange finite 
elements. The mesh is chosen to accurately predict the 
lowest twenty modal frequencies and mode shapes of 
the bridge. The model also considers the interaction 
with soil by modeling the soil stiffness with solid blocks 
surrounding the piers and abutments. The FE model 
has 830,000 DOF. The size of the elements in the 
mesh is controlled by the thickness of the deck and 
piers box-like cross-sections. The typical element 
length is of the order of the thickness of the deck cross- 
section. The complex 3D geometry of the bridge was 
designed in SolidWorks and the FE model was created 
and solved in COMSOL Multiphysics by importing the 
3D geometry from SolidWorks. The modulus of elastic-
ity for the concrete was taken from design considera-
tions to be 37 × 109 Pa and 34 × 109 Pa for the deck and 
the piers, respectively. The modulus of elasticity for the 
solid blocks was taken to be 9 × 109 Pa. The stiffness 
and mass matrices of the finite element model are used 
to obtain the mass normalized mode shapes to be used in 
the optimal sensor place ment methodology.   

 

 
 

Figure 1. Longitudinal view of the Metsovo Bridge 
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5.2 Optimal Sensor Placement  

The purpose of the OED is to optimally locate a num-
ber of acceleration sensors such that one gets the most 
informative data for identifying the lowest 10 modes. 
Using the FE model, the lowest 10 mode shapes 
needed in the design of the optimal sensor locations 
were computed and stored. These modes consist of 5 
transverse modes, with mode shapes that deform 
the bridge and deck in the transverse direction, and 5 
vertical modes mode, with mode shapes that bend the 
deck in the vertical direction. The transverse mode 
numbers are {1,2,4,6,8} , while the bending mode 
number are {3,5,7,9,10} . The optimal locations of 
sensors are obtained by maximizing the expected util-
ity function or minimizing the information entropy. 
Herein, results will be presented in terms of the in-
formation entropy measure. It should be noted that in 
our case the number of parameters (modal coordinates) 
is 10N mθ = = .  

5.2.1 Continuous Optimization in Parent Domain  
Due to the fact that measurements on the bridge deck 
have to be taken without traffic interruptions, the sen-
sors in the structure are only allowed to be placed 
along the pedestrian sidewalks (left and right). For 
demonstration purposes, in this study it will be as-
sumed that sensors are placed along the one sidewalk 
marked in Figure 2 with red line. The line along the 
sidewalk over which sensors can be placed is a curved 
one and in order to perform the optimization problem 
along the curved line we develop a mapping of the 
curved line in a much simpler parent domain of a stra-
ight line. Each point in the physical curved line is ma-
pped to a point in the straight parent line. To introduce 
such a mapping one can follow concepts developed in 
finite element analysis to map an arbitrary one- 
 

 
 

Figure 2. Optimization along pedestrian walkway of the deck 

dimensional element in space in a parent element of 
specified length. It should be noted that the curved 
one-dimensional domains (red line) in Figure 2 con-
sists of the straight elements that are the vertices of the 
neighbor tetrahedral finite elements used to model 
the bridge. So these straight vertices are mapped in the 
sequence that are encountered from left to the right 
edge of the bridge to a parent element so that the left 
corner of the red curve is mapped to the parent loca-
tion 0, while the right corner of the red curve is 
mapped to the parent location 1. Specifically, the 0 m 
to 537 m curved line along the deck is mapped to the 
parent domain from 0 to 1. 

To account for the different type of sensors that 
can be placed on the physical structures, in our case 
sensors measuring in the vertical and the transverse 
directions, the physical curved line with transverse 
sensors placed on it is mapped to a parent element 
from 0 to 1, while the physical curved line with verti-
cal sensors placed on it is mapped to a parent element 
from 1 to 2. In this way one can efficiently handle the 
two types of transverse and vertical sensors without 
the need to distinguish them during the optimization. 
The optimization is performed in the parent domain 
with the design variables, indicating the location of 
the sensors in the parent domain, to vary from 0 to 2. 
A design value inside the parent domain [0,1] corre-
sponds to a transverse sensor which is mapped 
through the aforementioned mapping to a point on the 
physical domain (red curve) in Figure 2. Similarly, a 
design value inside the parent domain [1,2] corre-
sponds to a vertical sensor which is mapped to a point 
on the physical domain (red curve) in Figure 2.  

The mode shape value at a point in the parent do-
main is obtained by the mode shape value at the cor-
responding point in the physical domain. Consider the 
mapping of points from 0 to 1 in the parent domain to 
the physical domain. Since the mapped point in the 
physical domain might not correspond to a node of the 
finite element model, the mode shape value is ob-
tained by interpolation using the mode shape values at 
the two neighboring nodes of that point in the trans-
verse direction. A similar procedure is used for 
points between 1 and 2 in the parent domain to find 
the mode shape component in the vertical direction.   

Using this mapping strategy the optimization is 
performed in a more sophisticated way than what was 
used in the past. Instead of performing multiple opti-
mizations for one sensor at a time which is predeter-
mined to be either a transverse or vertical sensor, now 
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it is allowed to optimize for several sensors simulta-
neously on the bridge pedestrian sideway, without 
predetermining the types of the sensors. Instead, it is 
left for the optimization to decide which of the sensors 
will be transverse and which will be vertical, depend-
ing on what region they lie in the parent domain.  

So the optimization proceeds as follows. The de-
sign vector δ  is a vector with as many elements as 
the number of uniaxial sensors. Each element of this 
vector describes both the location and the type (trans-
verse or vertical) of a sensor. Each element of the de-
sign vector δ  is a number on the interval [0 2]. This 
effectively allows for the optimization of many sen-
sors simultaneously, which includes making the deci-
sion about the types of sensors as well along with their 
location. This is more realistic and gives more free-
dom to the approach than predetermining how many 
sensors of each type one should include inδ .  

Note that the optimal sensor placement methodol-
ogy can also be readily applied to design a set of 
triaxial instead of uniaxial sensors. In this case the 
information from each triaxial sensor will be the com-
bined information obtained from the three sensor 
components in each direction. The aforementioned 
concept can also be extended to design a combination 
of uniaxial (e.g., transverse and vertical) and triaxial 
sensors by mapping the physical curved line with 
triaxial sensors placed on it to a parent element from 2 
to 3. In this way the three type of sensors can effi-
ciently be handled. However, the triaxial sensors will 
always be preferred to the transverse or vertical uni-
axial sensors since the information gain from a uniax-
ial sensor placed in an optimal position will always be 
less than the information gain from a triaxial sensor 
placed at the same position. To favor a uniaxial sensor 
in relation to a triaxial sensor one has to introduce 
additional constrains that penalize the placement of 
triaxial sensors by taking into account the extra cost of 
the sensor and the information gain a triaxial sensor 
will provide in relation to a uniaxial sensor. However, 
this complicates the optimization, with the subject 
falling outside the scope of the present work. The pre-
vious concepts can be extended to design a combina-
tion of different uniaxial and triaxial sensor types such 
as acceleration, displacement and strain sensors.     

5.2.2  Numerical Results for Spatially Uncorrelated 
Prediction Error Model 
An uncorrelated prediction error model is used with 

diagonal covariance matrix 
0

2( ; ) NIδ σ σΣ = , where  

0 0
0

N N
NI R ×∈  is the identity matrix, with the value of 

the single prediction error parameter chosen to be 
0.01σ = . A Gaussian prior with relatively large un-

certainties is used. As a result, the posterior covariance 
matrix ( ; )LQ δ σ  is non-singular and the design can 
proceed for any number of sensors. The covariance 
matrix of the Gaussian prior is set to 310 mS I= , with 

2 2 3
1 10ms s= = = .   

Results for up to 0 9N =  sensors are first obtained. 
Note that in this case the number of sensors is less 
than the number of modes ( 10m = ) and so the FIM is 
singular. The FSSP method is used to obtain the opti-
mal sensor locations. It should be noted, however, that 
the sensor locations obtained by the heuristic FSSP 
method are verified that are the global optima, also 
obtained by the CMA-ES global optimizer[27].  

The optimal location of the first sensor corresponds 
to the minimum of the information entropy. The in-
formation entropy as a function of the location of the 
sensor is drawn in Figure 3(A) at the parent domain. It 
can be seen that there are 9 local minima. Figure 3(B) 
shows the contour plots of the information entropy as 
a function of two sensor locations in the parent do-
main. A large number of local optima is also observed 
(blue color). The number of optima are expected to 
increase as the dimension of the design space increas-
es. Figures 3(A) and 3(B) confirm that there are a 
large number of local optima and so gradient-based 
optimization methods will be trapped to a local opti-
mum and will not be able to obtain a global optimum. 
Stochastic algorithms such as CMA-ES have much 
higher chances to pinpoint the global optimum.  

For the case of optimizing the location of the first 
sensor, a vertical sensor was obtained rather than a 
transverse one. The two minima at 1.58 and 1.91 in 
the parent domain in Figure 3(A) are smaller than all 
the rest, which implies that for the 1st sensor it is best 
to be a vertical sensor in one of these two locations 
which correspond to distances on the bridge of 310 m 
and 487 m, respectively, from the left end. The mini-
mum at 1.91 (487 m) is slightly smaller, but the dif-
ference is negligible for practical purposes. 

Another interesting observation in Figure 3(A) is 
that at the two ends of the bridge (at points 0, 1, and 2 
in the parent domain) the value of the posterior entro-
py is 48.72, which is exactly the information entropy  
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Figure 3. Information entropy vs. the location of a sensor in parent domain (A) 1st sensor, (B) 1st, and 2nd sensor (contour plots), (C) 
4th sensor, and (D) 5th sensor. 
 

of the Gaussian prior. This makes sense, because in 
these points the mode shapes have zero components 
and the FIM is zero, and therefore the only contribu-
tion to the posterior comes from the prior. There are 
also other points which result in the posterior entro-
py being almost equal to the prior entropy, which cor-
respond to vertical sensors being placed in points of 
zero vertical response (locations 1.08, 1.3 and 1.74 in 
the parent domain) for all vertical mode shapes. These 
are points in the deck that are above the piers where 
the vertical motion of the bridge is almost restrained. 
As one would intuitively expect, the information gain 
from these designs (which is the difference between 
the prior and posterior entropies) is zero.  

The information entropy as a function of the loca-
tion of the fourth sensor in the parent domain given 
that the first three sensors have been placed in their 
optimal position is shown in Figure 3(C). Similar plot 
for the information entropy as a function of the posi-
tion of the 5th sensor given that the first four sensors 
have been placed in their optimal position, is shown in 
Figure 3(D). The optimal locations of the first nine 
sensors are shown in Figures 4(A) and 4(B) for both 
the transverse and vertical sensors. Also, information 

of the optimal locations of sensors and the correspo-
nding information entropy values is given in Table 1.  

Note that the optimal location of the first two sen-
sors is made up of the location of the global and the 
next local optimum predicted in Figure 3(A). Also, 
from the results in Figure 4(B) the first 4 sensors are 
vertical sensors. This is because, as can be seen from 
Figures 4(A) and 4(B), vertical modes have slightly 
higher displacements and therefore contribute more 
than the transverse modes to the FIM, and therefore to 
the posterior covariance matrix. Also the vertical 
modes have more “convenient” points where several 
modes have high responses compared to the transverse 
modes. These result in preferring the vertical modes 
compared to the transverse modes. Note that all modes 
are treated equally by selecting the prior uncertainty 
to be the same for all modal coordinates. Finally, re-
sults in Figure 4(A) suggest that the last 5 sensors (5th 
to 9th sensors) are selected to measure in the transverse 
direction.  

From the results in Figure 3(C) of the information 
entropy as a function of the location of the 4th sensor, 
given that the first 3 sensors are placed at their optimal 
location, it is noticed that the vertical sensor at 85 m is 
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Figure 4. Optimal locations of (A) transverse sensors, and (B) vertical sensors (Case of 9 sensors with uncorrelated prediction error). 
The symbol x denotes the location of the piers along the deck. 

 
Table 1. Optimal location in the physical domain and minimum 
information entropy for the first nine sensors ( 0N m< ). V = 
Vertical, T = Transverse.  

Sensor 1 2 3 4 5 6 7 8 9 

Type V V V V T T T T T 

Optimal 
Location (m) 487 310 257 85 466 267 69 348 166 

Information 
Entropy 47.86 47.03 46.26 45.57 44.89 44.23 43.58 43.02 42.63 

 
slightly preferred from the three transverse sensors at 
69 m, 267 m, and 466 m since the minimum value  
of 45.57 in the information entropy for the vertical 
sensor is slightly smaller than the local minimum val-
ue of 45.58 for the information entropy for the three 
transverse sensors. From the results in Figure 3(D) of 
the information entropy as a function of the location 
of the 5th sensor, given that the first 4 sensors are 
placed at their optimal location, it can be observed that 
any of the locations 69, 267 and 466 m for a trans-
verse sensor are candidates. These sensor locations are 
the optimal sensor locations for the 5th, 6th and 7th 
sensor. The optimal sensors for the 8th and 9th sensor 
are transverse ones, with optimal locations shown in 
Figure 4(A) and Table 1.  

Observing the optimal sensor locations in relation 
to the mode shapes drawn in Figures 4(A) and 4(B), 
one should note that the results are reasonable for 
placing sensors in the suggested vertical or transverse 
locations since in these locations the mode shape com-
ponents correspond, in general, to their higher values.  

For up to nine sensors it is observed that placing 

two or more sensors in the same position corresponds 
to the worst sensor location. This is confirmed also by 
the contour plots in Figure 3(B) where the placing of 
the two sensors in the same position is not preferred 
(red colors). Also it is confirmed by the plots in Figure 
3 where it is clear that when a new sensor location 
coincides with an already placed sensor location it 
gives large values of the information entropy as com-
pared to the optimal one. So in the singular FIM case 
with 0N m< , the problem of sensor clustering[16] due 
to uncorrelated prediction error does not occur.  

The optimal location and type (transverse or verti-
cal) of the next 11 sensors (10th to 20th) is also consid-
ered. The design is performed using the FSSP algo-
rithm. However, for selected number of sensors, the 
accuracy of the results obtained from the FSSP algo-
rithm is confirmed by running also the CMA-ES algo-
rithm. Both algorithms provide the same estimates. 
The information entropy as a function of the location 
of the 10th sensor given that the first 9 sensors are 
placed at their optimal positions (shown in Table 1) is 
presented in Figure 5(A). Figure 5(B) gives similar 
information but for optimizing the location of the 19th 
sensor. The optimal sensor locations for the sensors 
from 10th to 20th, their type (vertical or transverse) and 
the minimum information entropy are also given in 
Table 2 and in Figure 6.  

It is clear from Figure 5(A) that the optimal location 
of the 10th sensor coincides with the location of the 1st 
sensor. Actually the information entropy as a function of 
the location of the 10th sensor is qualitatively similar 
to the information entropy for one sensor in Figure 3(A) 
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Figure 5. Information entropy vs. the location of a sensor in parent domain (A) 10th sensor, (B) 19th sensor. 
 

Table 2. Optimal location in the physical domain and minimum 
information entropy for the 10th up to the 20th sensor ( 0N m≥ ). 
V = Vertical, T = Transverse.  

Sensor 10 11 12 13 14 15 16 17 18 19 20 

Type V V V V T T T T T V V 

Optimal 
Location 

(m) 
487 310 251 85 251 69 460 348 160 482 310 

Infor-
mation 
Entropy 

42.33 42.04 41.75 41.47 41.19 40.91 40.64 40.39 40.17 39.98 39.80 

 
as a function of its location. Comparing Figures 5(A) 
and 3(A), the local/global optimal appears at the same 
locations, suggesting that the optimal locations of the 
next nine sensors will be close to the optimal locations 
of the first nine sensors. This is confirmed by com-
paring also the results in Table 2 with the results in 
Table 1. Comparisons clearly demonstrate (see also 
Figure 6) that the optimal locations of the sensors 9th  

to 20th coincide or they are very close to the optimal 
locations estimated for the first 9 sensors. This sensor 
clustering is due to the incorrect assumption of the 
spatially uncorrelated prediction errors[16]. However, it 
seems that the sensor design obtained with uncorre-
lated prediction errors are very reasonable and intui-
tive for the first nine sensors which correspond to the 
case of singular FIM with 0N m< . To correct the 
problem of sensor clustering for more than 9 sensors 
one has to introduce spatial correlation in the predic-
tion errors.  

5.2.3  Numerical Results for Spatially Correlated 
Prediction Error Model 
A spatially correlated prediction error model is assu-
med next. For this the covariance ( ; )δ σΣ  of the pre-
diction error at the sensor locations is selected to be 
non-diagonal with the ( , )i j  element of the form 
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Figure 6. Optimal locations of (A) transverse sensors, and (B) vertical sensors (Case of 20 sensors with uncorrelated prediction error). 
The symbol x denotes the location of the piers along the deck. 
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2( ; ) ( )ij i jRδ σ σ δ δΣ = − , where ( )i jR δ δ−  is the spa-

tial correlation structure of the prediction error, iδ  
and jδ  are the locations of the i  and j  sensors, and 

2σ  is the strength of the prediction error. An expo-
nentially decaying correlation structure of the form 

( ) exp( | | / )i j i jR δ δ δ δ λ− = − −  is selected, where 

λ  is the correlation length.  
Since in this formulation we allow for each sensor 

to be either transverse or vertical, correlation is lim-
ited to sensors of the same type. That is, correlation 
exists between any two transverse sensors or any two 
vertical sensors, but not between a transverse and a 
vertical sensor. The described model allows for two 
different correlation length parameters (or correlation 
functions in general) to be used for the transverse and 
vertical sensors, respectively. In the numerical results 

that follow, the correlation parameters are chosen 
to be 0.01σ =  and 10trans vert mλ λ= =  or transλ =  

20vert mλ = . 
Optimal sensor placement results for the correlated 

prediction error models are shown in Figure 7 for two 
different correlation length of 10 m and 20 m respec-
tively. The Gaussian prior is selected to be the same as 
in the uncorrelated prediction error case. Results 
have been derived using the FSSP algorithm and their 
accuracy has been also confirmed for representative 
sensor cases using the CMA-ES algorithm. Compar-
ing with the results of the uncorrelated case in Figure 
6 it can be observed that the optimal sensor locations 
for the first 9 sensors are the same as the uncorrelated 
prediction error case. For more than 9 sensors, the 
sensor clustering problem is not present in the spa-
tially correlated prediction error case. The optimal 
locations of sensors 10th to 20th are not close to the  
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Figure 7. Optimal locations of (A) transverse sensors ( 10mλ = ), (B) vertical sensors ( 10mλ = ), (C) transverse sensors ( 20mλ = ), 
and (D) vertical sensors ( 20mλ = ) (Case of 20 sensors with spatially correlated prediction error). The symbol x denotes the location 
of the piers along the deck. 
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locations obtained for the first 9 sensors. In fact, they 
are more uniformly distributed in some of the areas of 
the bridge deck. Comparing Figures 7(A,B) with Fig-
ures 7(C,D) it can be observed that the spacing of the 
sensors tends to increase as one increases the correla-
tion length from 10 m to 20 m. This is consistent with 
the theoretical results obtained by Papadimitriou and 
Lombaert[16]. 

In Figure 8 the optimal information entropy as a 
function of the number of sensors is shown for the 
uncorrelated and correlated prediction error cases and 
for 1 up to 30 sensors. The 0 sensor case corresponds 
to the case where no sensors are placed and so the 
information entropy is that of the Gaussian prior PDF. 
As expected, we notice that the optimal value of the 
information entropy for a given number of sensors 
decreases as the number of sensors increases. For up 
to 9 sensors the entropies are identical between the 
uncorrelated and correlated prediction error models. 
From the 10th sensor and on, the correlated prediction 
error models lead to more information entropy (less 
information) and this entropy increases with the cor-
relation length. This is due to the fact that the infor-
mation provided by neighbor sensors within the cor-
relation length assumed is not significantly different 
and so this results in a drop of the total information for 
the same number of sensors. Also, the curves with 
high correlation suggest that the information provid-
ed by adding sensors in the structure is decreasing and 
eventually after a number of sensors there is no sig-
nificant information offered by additional sensors. 
This plot can be used to decide on the number of sen-
sors to be placed in the structure, given the correlation 
length. The uncorrelated prediction error models pro-
vide misleading results since continuing adding sen-
sors in the structure has the effect of gaining additional  
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Figure 8. Optimal information entropy vs. number of sensors 

information, independent of the number of added 
sensors, which is counter-intuitive. Finally, the CMA- 
ES algorithm is also used to design the optimal sensor 
locations and the resulting information entropy values 
for representative sensor cases, shown in Figure 8 for 
correlation length 20 m, match exactly the information 
entropy values obtained using the FSSP algorithm, 
confirming in this case the accuracy of FSSP algo-
rithm.  

5.3 Effect of Prior Uncertainty on Optimal Sensor 
Placement 

The results obtained so far correspond to an isotropic 
Gaussian prior where all prior uncertainties in the pa-
rameters were selected to be the same. This gives 
equal weight to all parameters as far as the prior is 
concerned, so there is no preference of a specific 
mode over another. The Gaussian prior covariance 
matrix is a modelling choice that depends on user 
preference. Therefore, it can be fully manipulated ac-
cording to the needs. Equation (19) suggests that by 
giving larger prior uncertainties to some specific 
modes we are essentially giving more weight in these 
modes in the selection of the optimal design. The in-
sightful result from (19) states that a Gaussian prior 
can be used as a means to perform more sophisticated 
OED, where we give preference to some selected 
modes over others. Different Gaussian prior variances 
for the different modes get transferred to the posterior 
and result in different optimal designs, favoring the 
identification of modes with the largest prior variances. 
The Bayesian framework for OED provides the means 
to fully quantify this preference of some modes (or 
parameters for identification in general) over others 
through the prior. 

In order to illustrate this, the simple case of one 
sensor is examined. We would like to give more 
weight to the identification of the modal coordinates 
of the transverse modes. For this we lower the vari-
ances of the bending modes from 1000 to 100, and we 
keep the variances of the transverse modes at 1000. 
The information entropy as a function of the position 
of the 1st sensor is shown in Figure 9(A). We see that 
the optimal design for the 1st sensor is now a trans-
verse sensor in one of the already found optimal loca-
tions for transverse sensors, shown in Figure 3(D). In 
fact, the plot for one sensor in Figure 9(A) is now 
qualitatively very similar to the plot of the 5th sensor 
shown in Figure 3(D), where the first transverse sen-
sor appears as optimal. With this change in the prior  
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(A)                                             (B) 

Figure 9. (A) Information entropy of 1st sensor vs location in parent domain using Gaussian prior variance 2 1000s =  for transverse 
modes and 2 100s =  for vertical modes. (B) Optimal locations for 1st sensor for prior variance of 1st mode equal to 500, 1000 and 
2000. All other prior variances equal to 100.  
 
variances giving weight to the transverse modes, the 
optimal designs have a preference for the transverse 
sensors now to show up as the 1st sensor and not the 5th.  

Consider next the case of giving preference to the 
first modal coordinate which is transverse. The design 
is performed by setting all prior variances, except the 
first, equal to 100, while we set the prior variance of 
the first modal coordinate to different values 2

1 300s = , 

500, 1000 and 2000. For 2
1 300σ =  or for smaller va-

lues of 2
1s , the optimal sensor is selected to be a ver-

tical sensor. For values of 2
1s = 500, 100 and 2000, 

the transverse sensor is selected. The location of the 
transverse sensor for these higher values is shown in 
Figure 9(B). It is clear that increasing the value of 2

1s  
the sensor is located closer to the location where the 
first mode has its maximum absolute deflection. This 
is consistent with the theoretical result in Section 4.2 
which states that increasing the prior variance of the 
first mode gives more and more weight to the identi-
fication of the first mode, making it more important in 
the optimal sensor placement design. 

5.4  Optimal Sensor Placement of Reference Sensors 

The OED is next used to address the important prob-
lem of selecting the optimal location of a few refer-
ence sensors in a multiple sensor configuration set up 
experiment conducted with a limited number of refer-
ence and roving sensors in order to obtain the modal 
frequencies and assemble the mode shapes from the 
multiple setups. The number of reference sensors is in 
most cases significantly smaller than the number of 

modes to be identified. It is important in this case that 
the reference sensors, common in most setups, contain 
the maximum possible information for all modes that 
are planned to be identified. Wrong locations of the 
reference sensors may degrade the modal information 
for one or more modes, degrading the accuracy of the 
corresponding assembled mode shape since such ac-
curacy is based solely on the information contained in 
the reference sensors.  

The effectiveness of the methodology is illustrat-
ed by designing the optimal locations of one vertical 
and one transverse reference sensor for identifying the 
lowest 10 modes of the bridge. It is clear from the re-
sults in Figure 3(A) that the best location of the 1st 
sensor is at 487 m measuring along the vertical direc-
tion. This is also taken as the location of the vertical 
reference sensor. Figure 4(B) demonstrates that the 
design of the reference sensor at 487 m is rational  
since the deflection of all five vertical mode shapes is 
high. To design the location of the 1st transverse ref-
erence sensor one could use the results in Figure 9(A), 
obtained for the transverse modes after selecting the 
prior uncertainty to give in the optimal design prefer-
ential treatment to these modes over the vertical 
modes. It is clear that the transverse reference sensor 
can be selected as the location 268 m (parent location 
0.5) that corresponds to the minimum information 
entropy in Figure 9(A). From Figure 4(A) it is seen 
that the transverse reference sensor location 268 m 
corresponds to high deflections of four out of the five 
transverse modes. One of the transverse modes has 
relatively small deflection, a problem that arises from 
the trade-off that has to be made in the design to get  
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maximum information from all five modes. A solution 
to this problem is to place a second transverse sensor 
on the structure at position 70 m (the second best local 
optimum in Figure 4(A)). In practice, using more ref-
erence sensors that the minimum required (two in this 
case) is a good way to make sure that important in-
formation from reference sensors will not be lost. 
Concluding, the vertical and transverse reference sen-
sors in experiments with multi sensor configuration 
setups could be 487 m and 268 m (and/or 70 m), re-
spectively.  

6. Conclusions 

An optimal sensor placement design for modal identi-
fication based on the expected K-L divergence as a 
measure of the information contained in the data is 
shown to be equivalent to the optimal sensor place-
ment design based on the information entropy pro-
posed by Papadimitriou[18]. Using non-uniform priors, 
the Bayesian OED allows for optimal sensor place-
ment to be performed even for the case when the 
number of sensors is less than the number of identified 
modes. This is important when designing the optimal 
locations of a very small number of reference sensors 
for the purpose of assembling the mode shapes using 
reference and roving sensors in multiple sensor con-
figuration setups. In this study the effect of the 
Gaussian prior on the optimal design was thoroughly 
investigated. Insightful analytical expressions were 
derived to show that larger uncertainty in the prior of a 
subset of modal coordinates can be used to give pref-
erence in this subset in the optimal design of the sen-
sor locations. The prior variances for all modes to be 
identified can be altered to weight the importance of 
different modes in the design, favoring a number of 
modes against the rest of the modes. The prior is the 
users’ choice and it can be used in different ways to 
achieve different results, which is one of the strengths 
of Bayesian OED.  

The methodology was applied to a 537 m long re-
inforced concrete bridge in order to design the optimal 
sensor configuration for identifying the lowest 10 
modes. The optimization was performed in the con-
tinuous space of the design variables, through appro-
priate mapping from the physical space to a parent 
domain. A large number of local optima were ob-
served that result in a challenging optimization prob-
lem. The problem is overcome using computationally 
efficient heuristic FSSP algorithms. The accuracy of 
the FSSP algorithm was confirmed using the compu-

tationally demanding CMA-ES algorithm. A thorough 
investigation of the effect of correlated and uncorre-
lated prediction error models was also performed. The 
design for a smaller number of sensors than the num-
ber of modes was shown to be the same for spatially 
uncorrelated and correlated prediction error models. 
Rational and intuitive results were obtained. For more 
sensors than the number of modes the spatially corre-
lated prediction error model gave intuitively reasona-
ble results, avoiding sensor clustering observed for 
uncorrelated prediction error models.   

The proposed method offers a useful decision tool 
for designing the sensor locations in a structure in or-
der to obtain the maximum information for reliable 
modal identification of civil infrastructures and indus-
trial facilities using vibration measurements.  
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