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Abstract: Presented herein is a proposed greedy-search sensor placement optimization heuristic for the detection of
water leaks in water distribution networks (WDN). The proposed method is based on entropy, a measure of uncertainty
about the source of information, and its main mathematical properties of maximality, subadditivity and equivocation.
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1. Introduction

s existing water distribution networks (WDN)
Aage and their deterioration accelerates, their
constituent parts (mainly pipes) are increa-
singly at risk of failure. In fact, each year hundreds of
kilometers of pipes across the globe are upgraded or
replaced in an attempt to reduce water loss due to pipe
bursts. Water loss, defined as the percentage of drink-
ing water placed into a WDN that does not find its
way to billed customers (or unbilled authorized users),
consists of two broad classes: apparent losses and real
losses. The former category refers to the non-physical
losses that occur in utility operations, i.e., this is water
that is consumed but is not properly measured, ac-
counted or paid for. The latter category refers to the
physical losses of water from the distribution system,
including pipe breaks and leaks.
Research to-date has helped identify a number of
potential time-invariant and time-dependent risk fac-

tors contributing to pipe breaks. Among them include
factors such as a pipe’s age, diameter and material, as
well as the network’s operating pressure and water
flow!™. Several findings on risk assessment and priori-
tization of *“repair-or-replace” actions were also re-
ported by Christodoulou et al.® based on neuro-
fuzzy systems, survival analysis and geospatial clus-
tering of WDNs under both normal and abnormal op-
erating conditions. Their findings reinforced the need
for real-time monitoring of a WDN’s key operating
parameters (water pressure and flow), and also of soil
moisture and acoustic signals within the WDN (as
such signals may relate to leaking water).

Real-time monitoring is nowadays essentially per-
formed by supervisory control and data acquisition
systems (SCADA) and by use of sensors strategically
located across the network. The goal in placing such
sensors is to maximize their sensing effectiveness
while also limiting their deployment and operational
costs. Within such a framework of real-time sustaina-
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ble management of WDN and water loss detection, the
issue of sensor-placement optimization is of high im-
portance.

2. State of Knowledge on Sensor Placement

As aforementioned, sensor placement optimization is
a task critical to water loss detection. Unlike monitor-
ing spatial phenomena such as temperature, humidity,
noise or pollution, where sensors act radially, sensing
in piping networks is primarily restricted to longitu-
dinal actions (e.g., water flow and pressure, acoustic
signals).

In the case of water loss detection by use of spatial
monitoring (e.g., sensing soil moisture) one approach
is to assume that sensors have a fixed sensing radius
and then to solve the task graphically, or by use of
GIS-based spatial analysis®), or as an instance of the
art-gallery problem!™, or by use of Voronoi diagrams.
This assumption, though, of radially-fixed sensing is
erroneous for it fails to take into consideration that (i)
a sensor’s sensing capability is not radially-invariant,
and (ii) signal correlations are not always characte-
rized by radial geometries especially when more than
one sensor is needed to localize a signal. In the case of
Voronoi diagrams, the method is also biased to the
density of points (i.e., possible locations for sensors)
and unreliable circumstantially of the plane in study.

An alternative approach is to treat sensing not as a
spatial field but rather as a probabilistic data field,
assuming that its efficiency can be modeled by a mul-
tivariate normal distribution (i.e., a Gaussian Process,
“GP”, model). In the GP-model approach, data from a
pilot study or expert knowledge is used to learn the
parameters of the underlying GP distribution and then
the learned GP model is used to forecast data on the
same distribution. Thus, one can model the effect of
placing sensors at particular locations by use of GP
models and thus optimize the sensors’ positionst®®).

An alternative optimization criterion was proposed
by Caselton and Zidek™, based on the concept of
‘mutual information” which seeks sensor placements
that are most informative about unsensed locations.
The same criterion, coupled with a combinatorial op-
timization problem, was also employed by Krause et
al.™! who proposed an algorithm which combinato-
rially selects k out of n possible sensor locations by
first utilizing a lazy evaluation technique that exploits
submodularity to reduce significantly the number of
sensor locations that need to be checked, and then re-
ducing the order of computational complexity by ex-

ploiting locality in sensing areas.

As Krause et al.!”) reported, many criteria had been
proposed for characterizing the quality of placements
given a GP model, including placing sensors at the
points of highest entropy (variance) in the GP model.
A typical sensor placement technique is to greedily
add sensors where uncertainty about the phenomena is
highest!*?. A similar approach related to entropy and
mutual information was also reported by Guestrin et
al.®! who suggested that sensors should be placed so
as to maximize mutual information (i.e., maximum
joint entropy), and used a greedy-variance heuristic as
an approximation to the problem. Further, in order to
address the problem of sensors being placed far apart
along the boundary and information being ‘wasted’,
they proposed a weighting heuristic. Unfortunately,
though, as Krause et al.'™! and Guestrin et al.®®! re-
ported, “this criterion suffers from a significant flaw:
entropy is an indirect criterion, not considering the
prediction quality of the selected placements. The
highest entropy set, that is, the sensors that are most
uncertain about each other’s measurements, is usually
characterized by sensor locations that are as far as
possible from each other. Thus, the entropy criterion
tends to place sensors along the borders of the area of
interest™™®... Since a sensor usually provides informa-
tion about the area around it, a sensor on the boun-
dary ‘wastes’ sensed information”.

Entropy-related work on sensor placement optimi-
zation was also discussed by Chung et al.”! and Yang
et al.®™ The former™ investigated the problem of
determining optimal pressure monitoring locations
and proposed a method based on entropy, defining
entropy as the amount of information calculated from
the pressure change due to the variation of discharge.
Their method required the use of hydraulic (EPANET)
models for the investigation of the effect of abnormal
conditions on the entire network (pressure changes)
and the optimal locations for pressure sensors were
selected to be the nodes having the maximum infor-
mation from other nodes. The latter'™™ presented a
feature extraction and leak detection system using
approximate entropy to discriminate the leak signal
from the non-leak acoustic sources.

Dorini et al.™®!, in addressing the problem of early
detection of water contamination, formulated an op-
timal sensor placement methodology as a constrained
multi-objective optimization problem and solved it
based on the Noisy Cross-Entropy Sensor Locator
(nCESL) algorithm. Contemporary work by several
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researchers®®*% also addressed the same problem,
offering a number of possible solution alternatives.

Aral et al.”® provided a methodology based on si-
mulation and a single-objective function approach
which incorporates multiple factors used in the design
of a system, with a progressive genetic algorithm be-
ing used for the solution of the model. Genetic algo-
rithms were also the focus of Preis and Ostfeld®! who
presented a modified genetic algorithm scheme for
contaminant source characterization using three types
of perfect and imperfect sensors.

Diwold et al.?? presented a population-based ant
colony optimization algorithm for sensor placement in
water networks. Ant colony optimization was also the
research subject of Afshar and Marino®! who pre-
sented a numerical procedure for the optimization of
the position of water gquality monitoring stations in a
pressurized water distribution system. The procedure,
which is based on the choice of the set of sampling
stations which maximizes the monitored volume of
water while keeping the number of stations at a mini-
mum, is formulated in terms of integer programming
and its solution approximated by means of a mul-
ti-objective multi-colony ant algorithm.

A number of mathematical programming ap-
proaches are also presented in literature. Berry et al.l*"
present a mixed-integer programming formulation for
sensor placement optimization in municipal water dis-
tribution systems that includes the temporal characte-
ristics of contamination events and their impacts. The
information is utilized in computing the impact of a
contamination event over time and determining af-
fected locations, by quantifying the benefits of sensing
contamination at different junctions in the network.
Berger-Wolf et al.l® considered two variants of sen-
sor placement for contamination detection and showed
that the sensor and time constrained versions of the
problem are polynomially equivalent. Carr et al.l*®
presented a series of related robust optimization mod-
els for placing sensors in municipal water networks to
detect contaminants that are maliciously or acciden-
tally injected. The sensor placement problem is for-
mulated as a mixed-integer programming problem, for
which the objective coefficients are not known with
certainty. They then consider a restricted absolute ro-
bustness criterion that is motivated by natural restric-
tions on the uncertain data, and define three robust
optimization models that differ in how the coefficients
in the objective vary. Watson et al.””! also presented
mixed-integer linear programming models for the
sensor placement problem over a range of design ob-

jectives. Using two real-world water systems, they
showed that optimal solutions with respect to one de-
sign objective are typically highly sub-optimal with
respect to other design objectives. The implication is
that robust algorithms for the sensor placement prob-
lem must carefully and simultaneously consider mul-
tiple, disparate design objectives.

3. Entropy — Overview and Relevant Properties

Entropy (Hy), in physics, is a measure of the unavaila-
bility of a system’s energy to do work and, by extent,
a measure of the smoothness with which a transforma-
tion occurs and of the disorder and the amount of
wasted energy during the transformation from one
state to another. Mathematically, entropy can be ex-
pressed as the product of the probability mass function
(px) of a variable x, times the natural logarithm of the
inverse of the probability (Equation 1).

He=Y 0, In(pij ®

Among entropy’s principal properties, three are of
particular importance: subadditivity, maximality and
equivocation.

e Subadditivity denotes that a function’s value for
the sum of two elements is always less than or
equal to the sum of the function’s values for each
element.

e Maximality states that the entropy function, H (py,
P2...., Pn), takes the greatest value when all ad-
missible outcomes have equal probabilities (p; =
P2 = ... = pp). In other words, maximal uncer-
tainty is reached for the equiprobability distribu-
tion of possible outcomes.

e Equivocation is in effect the conditional entropy
of one random variable against another, and it
quantifies the remaining entropy (i.e., the uncer-
tainty) of a random variable Y given that the
value of another random variable X is known.

4. A Closer Look at Equivocation

In mathematical terms, equivocation is referred to as
the entropy of Y conditional on X. It is written as
H(Y | X) and can be shown to be governed by the

following equation:

H(Y [X)= 2 [POOH(Y [ X =X)] )

xe X
1
gmxg{p(v'@“p(ym} )
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p(x,y)

It should be noted that the conditional entropy of Y
given X, H(Y | X), is bound by the entropy of Y and

that the joint entropy of Y and X, H(Y, X), is bound
by the sum of the conditional entropies of H(Y | X)
and H(X|Y).

HXTY) < H(X) ®)
H(X,Y)=H(X[Y)+H(Y [ X)+I(X,Y) (6)
1(X,Y)<H(X) @)

where 1(X,Y) is the mutual information between X
and Y. For independent X and Y,
H(Y|X) = H(Y) and H(X|Y)=H(X) (8)
As a corollary, the chain rule for conditional proba-
bility forms to be

HX)= Y {p(xy)n p”} ©

xeX,yeY ( y)
Y o NpO I+ Y. {p(x,y)In[p(x)1}

xeX,yeY XeX,yeY
(10)
=H(X,Y)+ > {p(x)In[p(x)]} (11)
xeX

=H(X,Y)-H(X) (12)

An illustrative example of the above properties can
be found in Christodoulou et al.”?®!,

5. Sensor Placement Optimization and Entropy
Maximization

Since entropy is considered to be a good measure of a
system’s order and stability, maximizing in value
when a system is at an “equiprobability” state, then a
higher degree of entropy should also indicate a more
balanced system in terms of sensed information; one
in which the information generated and/or distributed
among its parts are of equal value. The sensor-place-
ment optimization problem could thus be restated as
one in which sensor locations are sought so that the
system entropy is maximized.

Should one refer to the entropy equation (Equation
1) and define the probability term p, in terms of a sta-
tistical measure of the ratio of a sensor’s sensing ra-
dius over the total length of the network, then the total
network entropy, Hy, for a single-type sensor would
become

Al el

where r; is the sensing radius of sensor i, n is the total
number of sensors in the network, and Ly is the total
length of the network.

It should be noted, though, that even though the
above definition of py, = r/Lt conforms to classical
probability properties when sensors cover the entire
network length, it does not conform when they do not
and thus it is not mathematically correct. A solution to
the problem, also conforming to the properties of en-
tropy, is the definition of the ratio of r/L based on the
arc length and not the network length. Thus, the value
of py is taken to be the ratio of the sensor’s radius over
the length of the network arc being sensed, and the
total system entropy can be computed by summing up
the entropy values for each arc. This definition also
adheres to the fact that sensors at junctions of multiple
arcs contribute to the entropy levels of these arcs, and
helps avoid clustering of sensors at only a few parts of
the network. Further, in order to account for the over-
lap in sensing radii of sensors placed at the end-nodes
of an arc, and/or segment lengths shorter than the
sensor’s sensing radius, the value of r; used in Equa-
tion 13 is taken as the minimum between the segment
length, L;, and the sensor’s sensing radius, x; (in the
case of one sensor), or the combined sensing radii (in
the case of two sensors).

r=min{x; L} (14)
Thus, for a single-type sensor,

Sl Slole] m

and for multiple sensor types, the total network en-
tropy can similarly be defined as

Hy _z_ig{ T'JJ In [fm H (16)

where j is the sensor-type index; n, is the number of
different sensor types used in the project; r; is the
number of units of sensor type j used on node i; n is
the total number of sensors in the network and rr; is
the total number of units of sensor type j used in the
network. The goal, therefore, is to maximize the net-
work entropy subject to an allowable maximum num-
ber of sensors (of a specified sensing radius) or, equi-
valently, to maximize the entropy while minimizing
the number of sensors used.
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For example, in the sample arc shown in Figure
1(A) with length greater than the sum of the sensing
radii, suppose we denote a sensed node by a filled
circle and a node without a sensor as an empty circle,
then based on the above definition of entropy the total
entropy produced by the shown arc configuration can

be computed as
in(2x; L in(2x;L
_min(2x; )>< nmm( % ):—2xxln(2—LX).

L L

In the case of an arc length shorter than the sum of the
sensing radii of the two nodal sensors (Figure 1(B))
the total pipe entropy is taken as

B mln(fx; L) i mln(EX; L) _ L In(EJ _o.

M o el M o e Y
X X X £
EERY
L L
- - - »-
(A) (B)

Figure 1. Proposed entropy-based sensor placement method:
Generic cases of arc length (A) smaller and (B) greater than the
sensing radii of sensors at the end-nodes.

Furthermore, for pipes whose length is smaller than
the sum of the sensing radii of two nodal sensors (one
at each pipe end), the entropy approach results in zero
entropy values. If only one sensor is used (at either of
the nodes), the entropy value is higher than zero, thus
the entropy-maximization approach gives higher pre-
ference to a single-node arrangement compared to the
two-node arrangement. A numeric demonstration can
be seen in Figure 2. Suppose, for a pipe of length 300
meters, one sensor be used (at node n;) with an as-
sumed sensing radius of 200 meters, then the entropy

 X=200 .
Ny g = n; n, ; ) .rl‘ )
x=200 . x=é'06..;‘
. L=300 . L=300 {
(A) (B)

Figure 2. Proposed entropy-based sensor placement method:
Numeric example for the case of sensors at (A) one end-node
and (B) both end-nodes, for an arc with length between 1x and
2x the sensor’s sensing radius.

for pipe (nj, nj) is computed to be

—@x In (@j =0.270.
300 300

If two sensors are used (at nodes n; and n;) then the
entropy is computed to be

_300 xIn (@j =0.000.

300 300

It should be noted that the method shows preference for
a single sensor compared to sensors at both end-nodes,
and that the proposed entropy-maximization approach
holds true in more complicated sensor arrangements
as well®!,

6. Case Study of a Pipe Network

Let us now consider a more complicated piping net-
work example, based on a real-life district metered
area (DMA) network (Figure 3). The network consists
of 448 nodes (possible sensor locations) and 633 pipes
of varying length (in meters). The topology and nodal
connectivity of the case study network are as shown in
Figures 4 and 5, respectively.

Figure 3. Case-study network (shown in black outline), based
on real-life DMA from Limassol’s (Cyprus) UWDN.

The network’s total entropy is the sum of all arc
entropies as defined in the previous section, and can
mathematically be expressed as

N
H_FYSTEM — Z Hij — (17)
i=1

H20,44 + H20’31 + H44‘12 + H44’42 + H31,32 4ot

Hag6,385 + Haga 385 (18)
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Figure 4. Nodal connectivity of the DMA network considered.
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Figure 5. Topology of the DMA network considered, with pipe lengths shown on network arcs
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where, i, j are connected arc nodes and n; is the total
number of nodes in the network. The equation essen-
tially loops over all arcs in the network (from left to
right in this case), identifying the connected nodes and
calculating the resulting arc entropy, before summing
up the total network entropy. This total entropy is zero
when no sensors are present in the network (no-sensor

configuration case) and can be evaluated to be Hy ™" =

0.214 when sensors are located at each and every
node (all-sensor configuration case). The all-sensor
case is in effect sensitive to only the arcs whose length
is greater than the addition of the sensing radii for
each arc.

Let us now consider the entropy-maximization ap-
proach. The method starts with the nodal entropy val-
ues from the all-sensor configuration as the calcula-
tion base, and assumes that the entropy contributions
to the total network entropy from the nodal sensors are
not subject to the equivocation property. Upon rank-
ing the nodal entropies in descending order, the me-
thod selects the node that contributes the maximum to
the network entropy and places a sensor at that node.
For the case-study network, the node to first receive a
sensor is node “329” (Figure 6), causing an increase in
entropy by

min(47;100) = min(47;100)
- xIn =0.000,
47 47
min (128;100) min(128;100)
- xIn =-1.606
128 128
and
min(173;100) min (173;100)
- xIn =-0.317
173 173
along arcs [328,329], [330,329] and [384,329] respec-
tively.

Upon assigning a sensor at a node, the entropy val-
ues of the connecting nodes are adjusted, considering
equivocation and the entropy-maximization approach
(Equations 14 and 15). For example, having placed a
sensor at node “329” and thus sensing pipes [329,328],
[329,330] and [329,384], the entropy values of con-
nected nodes *“328”, “330” and *“384” need to be ad-
justed so that the equivocation property applies. Given
that the total entropy of arcs [328,329], [330,329] and
[384,329] when sensors are installed at both arc nodes is

~ min (47;200) <In min (47;200)

=0.000,
47 47
min (128;200) min (128;200)
- xIn =0.000
128 128

and
min(173;200) In min(173;200)
173 173
respectively, then the entropy adjustments on nodes
“328”, “330” and “384” are 0.000, 1.606 and 0.317
respectively.

The revised nodal entropies are re-calculated and
the node with the highest entropy is selected for sen-
sor placement. The process is repeated until the max-
imum available number of sensors is reached. If, in
this case-study network, we assume that a constraint
on the number of sensors (n;) is imposed of n; = 6,
then the proposed entropy-maximization approach
arrives at the sensor topology shown in Figure 7, with
the total network entropy calculated at Hy = 20.321.

The process may continue until the entropy heuris-
tic places enough sensors in the WDN in study to
cover it entirely. Solution of this problem is reached in
short computational times (depending on the size of
the network and the presumed sensing radius), espe-
cially if hydraulic parameters are not included in the
analysis and the WDN is treated as static geometry of
arcs and nodes. For the case study WDN, the number
of sensors required for complete coverage is computed
by the entropy heuristic to be 49.

=0.000

7. Considering Hydraulics

As shown in Figure 7, the entropy-optimization heu-
ristic moves towards maximality, not when all nodes
are used as sensor positions, but rather when sensors
are positioned at selected nodal positions (not neces-
sarily at the boundaries of the network). However, as
implemented above, the proposed method does not
take into consideration the hydraulics in the network.
Thus, it is more suitable to sensors which are hydrau-
lic-invariant, such as acoustic sensors.

In the case of sensors which are directly affected by
the hydraulics in the studied network (such as pressure
or water flow sensors), one needs to also consider
these hydraulic parameters in the entropy-maximiza-
tion method, without having to evaluate the hydraulic
model at each iteration of the greedy-search heuristic.
The proposed algorithm could then be adjusted so as
to allow for a weighing or for a spatial clustering me-
chanism that would give priority to specific areas in
the network and steer nodal selections towards these
areas.

Consider, for example, a terrain elevation map for
the network area in study (as shown in Figure 8) and
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Figure 7. Entropy-based sensor placement optimization (first 6 sensors).
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DMA Region Elevation Map (m)

[ 22.00 - 25.00
[ 25.00 - 30.00
[ 30.00 - 35.00
[ 35.00 - 40.00
40.00 - 45.00
[ 45.00 - 50.00
[ 50.00 - 55.00
I 55.00 - 60.00

Figure 8. Network terrain elevation map.

the assumption that the studied water distribution
network is gravity-based. Thus, the hydraulics are
greatly dependent on the elevations, with pipes at
higher elevations operating at lower water pressures.
Consider, further, that the network is divided in two
elevation clusters, namely [22 m, 40 m) and [40 m, 60
m], and the need to locate a sensor in the [22 m, 40 m)
zone having adequately covered the [40 m, 60 m] zone
with the first 6 sensors positioned in the network
(Figure 8).

The greedy-search entropy-maximization heuristic
would now give precedence to nodes within the [22 m,
40 m) zone, identifying nodes “57” and “511” as the
next ones to receive a sensor and bypassing three oth-
er nodes in the [40 m, 60 m] zone which were next in
line to receive a sensor. The resulting entropy-based
sensor placement configuration is as shown in Figure 9,
with the latter two sensors shown in different color.

Even though the aforementioned process is static in
nature and thus a rough approximation to the inclusion
of water pressures in the analysis, a similar metho-
dology would be employed in the presence of a hy-
draulic model forecasting nodal pressures based on
consumer demand (and not gravity). An initial hy-
draulic estimation of the pressures would facilitate the
creation of a pressure map for the network which
would then be used to spatially identify the pressure
clusters in the network. These pressure zones would

then be used as a weighing mechanism for steering the
location of pressure sensors in each of the areas of
interest.

8. Conclusion

The work presented herein discusses sensor placement
optimization for water distribution networks, propos-
ing a greedy-search heuristic based on entropy and its
subadditivity, maximality and equivocation properties.
The proposed method formulates the sensor placement
optimization problem as an entropy-maximization
problem, with entropy defined in terms of the ratio of
a sensor’s sensing distance over the length of the pipe
being monitored, and its sum over the total network
length maximized. The heuristic provides for near-
optimal solutions to the sensor optimization problem
in water distribution networks, with absolute optimal-
ity not necessarily sought or being attainable espe-
cially under dynamic hydraulic operations.

The proposed approach, which is applicable to lon-
gitudinal rather than spatial sensing (thus to devices
such as acoustic, pressure, or flow sensors acting on
pipe segments), can be readily applied to network to-
pologies of any size and without a prior knowledge of
their hydraulic parameters, and can be enhanced by
introducing into the analysis greedy-search parameters
such as network elevation data. Further, the method
does not yield solutions with sensor locations as far as
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Figure 9. Entropy-based sensor placement optimization (all 8 sensors).

possible from each other, or with sensors placed along
the borders of the area of interest, as Ramakrishnan et
al.*¥ noted in their work about entropy and mutual
information.

Future work on sensor placement and on the pro-
posed entropy-maximization heuristic entails the fol-
lowing actions:

e Expand the method to incorporate a network’s
operating parameters further to its topology. This
will allow the algorithm to consider real-time
operating pressure and flow data, as well as digi-
tal elevation models to better optimize sensor lo-
cations.

e Use sensor placement optimization to minimize
the time to detect water loss or contamination in-
cidents in the piping network.

o Utilize the optimized sensor location to increase
the network’s reliability against catastrophic
events.
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