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Abstract: Presented herein is a proposed greedy-search sensor placement optimization heuristic for the detection of 
water leaks in water distribution networks (WDN). The proposed method is based on entropy, a measure of uncertainty 
about the source of information, and its main mathematical properties of maximality, subadditivity and equivocation. 
The method proposes an entropic metric which is subsequently utilized in selecting nodal locations and in heuristically 
searching for the locations that maximize the total entropy in the WDN, relating maximal entropy with maximal sensing 
coverage. 
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1. Introduction 

s existing water distribution networks (WDN) 
age and their deterioration accelerates, their 
constituent parts (mainly pipes) are increa-

singly at risk of failure. In fact, each year hundreds of 
kilometers of pipes across the globe are upgraded or 
replaced in an attempt to reduce water loss due to pipe 
bursts. Water loss, defined as the percentage of drink-
ing water placed into a WDN that does not find its 
way to billed customers (or unbilled authorized users), 
consists of two broad classes: apparent losses and real 
losses. The former category refers to the non-physical 
losses that occur in utility operations, i.e., this is water 
that is consumed but is not properly measured, ac-
counted or paid for. The latter category refers to the 
physical losses of water from the distribution system, 
including pipe breaks and leaks. 

Research to-date has helped identify a number of 
potential time-invariant and time-dependent risk fac-

tors contributing to pipe breaks. Among them include 
factors such as a pipe’s age, diameter and material, as 
well as the network’s operating pressure and water 
flow[1]. Several findings on risk assessment and priori-
tization of “repair-or-replace” actions were also re-
ported by Christodoulou et al.[1–5] based on neuro-
fuzzy systems, survival analysis and geospatial clus-
tering of WDNs under both normal and abnormal op-
erating conditions. Their findings reinforced the need 
for real-time monitoring of a WDN’s key operating 
parameters (water pressure and flow), and also of soil 
moisture and acoustic signals within the WDN (as 
such signals may relate to leaking water). 

Real-time monitoring is nowadays essentially per-
formed by supervisory control and data acquisition 
systems (SCADA) and by use of sensors strategically 
located across the network. The goal in placing such 
sensors is to maximize their sensing effectiveness 
while also limiting their deployment and operational 
costs. Within such a framework of real-time sustaina-
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ble management of WDN and water loss detection, the 
issue of sensor-placement optimization is of high im-
portance. 

2. State of Knowledge on Sensor Placement 

As aforementioned, sensor placement optimization is 
a task critical to water loss detection. Unlike monitor-
ing spatial phenomena such as temperature, humidity, 
noise or pollution, where sensors act radially, sensing 
in piping networks is primarily restricted to longitu-
dinal actions (e.g., water flow and pressure, acoustic 
signals). 

In the case of water loss detection by use of spatial 
monitoring (e.g., sensing soil moisture) one approach 
is to assume that sensors have a fixed sensing radius 
and then to solve the task graphically, or by use of 
GIS-based spatial analysis[6], or as an instance of the 
art-gallery problem[7], or by use of Voronoi diagrams. 
This assumption, though, of radially-fixed sensing is 
erroneous for it fails to take into consideration that (i) 
a sensor’s sensing capability is not radially-invariant, 
and (ii) signal correlations are not always characte-
rized by radial geometries especially when more than 
one sensor is needed to localize a signal. In the case of 
Voronoi diagrams, the method is also biased to the 
density of points (i.e., possible locations for sensors) 
and unreliable circumstantially of the plane in study.  

An alternative approach is to treat sensing not as a 
spatial field but rather as a probabilistic data field, 
assuming that its efficiency can be modeled by a mul-
tivariate normal distribution (i.e., a Gaussian Process, 
“GP”, model). In the GP-model approach, data from a 
pilot study or expert knowledge is used to learn the 
parameters of the underlying GP distribution and then 
the learned GP model is used to forecast data on the 
same distribution. Thus, one can model the effect of 
placing sensors at particular locations by use of GP 
models and thus optimize the sensors’ positions[8,9]. 

An alternative optimization criterion was proposed 
by Caselton and Zidek[10], based on the concept of 
‘mutual information’ which seeks sensor placements 
that are most informative about unsensed locations. 
The same criterion, coupled with a combinatorial op-
timization problem, was also employed by Krause et 
al.[11] who proposed an algorithm which combinato-
rially selects k out of n possible sensor locations by 
first utilizing a lazy evaluation technique that exploits 
submodularity to reduce significantly the number of 
sensor locations that need to be checked, and then re-
ducing the order of computational complexity by ex-

ploiting locality in sensing areas. 
As Krause et al.[9] reported, many criteria had been 

proposed for characterizing the quality of placements 
given a GP model, including placing sensors at the 
points of highest entropy (variance) in the GP model. 
A typical sensor placement technique is to greedily 
add sensors where uncertainty about the phenomena is 
highest[12]. A similar approach related to entropy and 
mutual information was also reported by Guestrin et 
al.[8] who suggested that sensors should be placed so 
as to maximize mutual information (i.e., maximum 
joint entropy), and used a greedy-variance heuristic as 
an approximation to the problem. Further, in order to 
address the problem of sensors being placed far apart 
along the boundary and information being ‘wasted’, 
they proposed a weighting heuristic. Unfortunately, 
though, as Krause et al.[11] and Guestrin et al.[8] re-
ported, “this criterion suffers from a significant flaw: 
entropy is an indirect criterion, not considering the 
prediction quality of the selected placements. The 
highest entropy set, that is, the sensors that are most 
uncertain about each other’s measurements, is usually 
characterized by sensor locations that are as far as 
possible from each other. Thus, the entropy criterion 
tends to place sensors along the borders of the area of 
interest[13]... Since a sensor usually provides informa-
tion about the area around it, a sensor on the boun-
dary ‘wastes’ sensed information”. 

Entropy-related work on sensor placement optimi-
zation was also discussed by Chung et al.[14] and Yang 
et al.[15] The former[14] investigated the problem of 
determining optimal pressure monitoring locations 
and proposed a method based on entropy, defining 
entropy as the amount of information calculated from 
the pressure change due to the variation of discharge. 
Their method required the use of hydraulic (EPANET) 
models for the investigation of the effect of abnormal 
conditions on the entire network (pressure changes) 
and the optimal locations for pressure sensors were 
selected to be the nodes having the maximum infor-
mation from other nodes. The latter[15] presented a 
feature extraction and leak detection system using 
approximate entropy to discriminate the leak signal 
from the non-leak acoustic sources. 

Dorini et al.[16], in addressing the problem of early 
detection of water contamination, formulated an op-
timal sensor placement methodology as a constrained 
multi-objective optimization problem and solved it 
based on the Noisy Cross-Entropy Sensor Locator 
(nCESL) algorithm. Contemporary work by several 
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researchers[9,17–19] also addressed the same problem, 
offering a number of possible solution alternatives. 

Aral et al.[20] provided a methodology based on si-
mulation and a single-objective function approach 
which incorporates multiple factors used in the design 
of a system, with a progressive genetic algorithm be-
ing used for the solution of the model. Genetic algo-
rithms were also the focus of Preis and Ostfeld[21] who 
presented a modified genetic algorithm scheme for 
contaminant source characterization using three types 
of perfect and imperfect sensors. 

Diwold et al.[22] presented a population-based ant 
colony optimization algorithm for sensor placement in 
water networks. Ant colony optimization was also the 
research subject of Afshar and Marino[23] who pre-
sented a numerical procedure for the optimization of 
the position of water quality monitoring stations in a 
pressurized water distribution system. The procedure, 
which is based on the choice of the set of sampling 
stations which maximizes the monitored volume of 
water while keeping the number of stations at a mini-
mum, is formulated in terms of integer programming 
and its solution approximated by means of a mul-
ti-objective multi-colony ant algorithm. 

A number of mathematical programming ap-
proaches are also presented in literature. Berry et al.[24] 
present a mixed-integer programming formulation for 
sensor placement optimization in municipal water dis-
tribution systems that includes the temporal characte-
ristics of contamination events and their impacts. The 
information is utilized in computing the impact of a 
contamination event over time and determining af-
fected locations, by quantifying the benefits of sensing 
contamination at different junctions in the network. 
Berger-Wolf et al.[25] considered two variants of sen-
sor placement for contamination detection and showed 
that the sensor and time constrained versions of the 
problem are polynomially equivalent. Carr et al.[26] 
presented a series of related robust optimization mod-
els for placing sensors in municipal water networks to 
detect contaminants that are maliciously or acciden-
tally injected. The sensor placement problem is for-
mulated as a mixed-integer programming problem, for 
which the objective coefficients are not known with 
certainty. They then consider a restricted absolute ro-
bustness criterion that is motivated by natural restric-
tions on the uncertain data, and define three robust 
optimization models that differ in how the coefficients 
in the objective vary. Watson et al.[27] also presented 
mixed-integer linear programming models for the 
sensor placement problem over a range of design ob-

jectives. Using two real-world water systems, they 
showed that optimal solutions with respect to one de-
sign objective are typically highly sub-optimal with 
respect to other design objectives. The implication is 
that robust algorithms for the sensor placement prob-
lem must carefully and simultaneously consider mul-
tiple, disparate design objectives. 

3. Entropy — Overview and Relevant Properties 

Entropy (Hx), in physics, is a measure of the unavaila-
bility of a system’s energy to do work and, by extent, 
a measure of the smoothness with which a transforma-
tion occurs and of the disorder and the amount of 
wasted energy during the transformation from one 
state to another. Mathematically, entropy can be ex-
pressed as the product of the probability mass function 
(px) of a variable x, times the natural logarithm of the 
inverse of the probability (Equation 1). 

 

1lnx x
xx

H p
p

 
=  

 
∑  (1) 

Among entropy’s principal properties, three are of 
particular importance: subadditivity, maximality and 
equivocation. 

• Subadditivity denotes that a function’s value for 
the sum of two elements is always less than or 
equal to the sum of the function’s values for each 
element. 

• Maximality states that the entropy function, H (p1, 
p2,…, pn), takes the greatest value when all ad-
missible outcomes have equal probabilities (p1 = 
p2 = ... = pn). In other words, maximal uncer-
tainty is reached for the equiprobability distribu-
tion of possible outcomes. 

• Equivocation is in effect the conditional entropy 
of one random variable against another, and it 
quantifies the remaining entropy (i.e., the uncer-
tainty) of a random variable Y given that the 
value of another random variable X is known. 

4. A Closer Look at Equivocation 

In mathematical terms, equivocation is referred to as 
the entropy of Y conditional on X. It is written as 

( | )H Y X  and can be shown to be governed by the 
following equation: 

 
( | ) [ ( ) ( | )]

x X
H Y X p x H Y X x

∈
≡ =∑  (2) 

 1( ) ( | ) ln
( | )x X y X

p x p y x
p y x∈ ∈

 
=  

 
∑ ∑  (3) 
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,

( )( , ) ln
( , )x X y X

p xp x y
p x y∈ ∈

 
=  

 
∑  (4) 

It should be noted that the conditional entropy of Y 
given X, ( | )H Y X , is bound by the entropy of Y and 
that the joint entropy of Y and X, ,( )H Y X , is bound 
by the sum of the conditional entropies of ( | )H Y X  
and ( | )H X Y . 

 ( | ) ( )H X Y H X≤  (5) 

 ( , ) ( | ) ( | ) ( , )H X Y H X Y H Y X I X Y= + +  (6) 

 ( , ) ( )I X Y H X≤  (7) 

where ( , )I X Y  is the mutual information between X 
and Y. For independent X and Y, 

    and  ( | ) ( ) ( | ) ( )H Y X H Y H X Y H X= =  (8) 
As a corollary, the chain rule for conditional proba-

bility forms to be 

 ,

( )( | ) ( , ) ln
( , )x X y Y

p xH Y X p x y
p x y∈ ∈

 
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 
∑  (9) 
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{ ( , ) ln[ ( , )]} { ( , ) ln[ ( )]}

x X y Y x X y Y
p x y p x y p x y p x

∈ ∈ ∈ ∈
= − +∑ ∑

(10) 
 ( , ) { ( ) ln[ ( )]}

x X
H X Y p x p x

∈
= + ∑  (11) 

 ( , ) ( )H X Y H X= −  (12) 

An illustrative example of the above properties can 
be found in Christodoulou et al.[28]. 

5. Sensor Placement Optimization and Entropy 
Maximization 

Since entropy is considered to be a good measure of a 
system’s order and stability, maximizing in value 
when a system is at an “equiprobability” state, then a 
higher degree of entropy should also indicate a more 
balanced system in terms of sensed information; one 
in which the information generated and/or distributed 
among its parts are of equal value. The sensor-place-
ment optimization problem could thus be restated as 
one in which sensor locations are sought so that the 
system entropy is maximized. 

Should one refer to the entropy equation (Equation 
1) and define the probability term px in terms of a sta-
tistical measure of the ratio of a sensor’s sensing ra-
dius over the total length of the network, then the total 
network entropy, HT, for a single-type sensor would 
become 

 
1 1

1ln ln
/

t tn n
i i i

T
T i T T Ti i

r r rH
L r L L L= =

      
= = −      

        
∑ ∑  (13) 

where ri is the sensing radius of sensor i, nt is the total 
number of sensors in the network, and LT is the total 
length of the network. 

It should be noted, though, that even though the 
above definition of px = r/LT conforms to classical 
probability properties when sensors cover the entire 
network length, it does not conform when they do not 
and thus it is not mathematically correct. A solution to 
the problem, also conforming to the properties of en-
tropy, is the definition of the ratio of r/L based on the 
arc length and not the network length. Thus, the value 
of px is taken to be the ratio of the sensor’s radius over 
the length of the network arc being sensed, and the 
total system entropy can be computed by summing up 
the entropy values for each arc. This definition also 
adheres to the fact that sensors at junctions of multiple 
arcs contribute to the entropy levels of these arcs, and 
helps avoid clustering of sensors at only a few parts of 
the network. Further, in order to account for the over-
lap in sensing radii of sensors placed at the end-nodes 
of an arc, and/or segment lengths shorter than the 
sensor’s sensing radius, the value of ri used in Equa-
tion 13 is taken as the minimum between the segment 
length, Li, and the sensor’s sensing radius, xi (in the 
case of one sensor), or the combined sensing radii (in 
the case of two sensors). 
 min{ ; }i i ir x L=  (14) 

Thus, for a single-type sensor, 

 1 1

1ln ln
/
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T
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r r rH
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      
= = −      

         
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and for multiple sensor types, the total network en-
tropy can similarly be defined as 

 

, ,

, ,1 1
ln

tr nn
i j i j

T
T j T jj i

r r
H

r r= =

  
=       
∑∑  (16) 

where j is the sensor-type index; nr is the number of 
different sensor types used in the project; ri,j is the 
number of units of sensor type j used on node i; nt is 
the total number of sensors in the network and rT,j is 
the total number of units of sensor type j used in the 
network. The goal, therefore, is to maximize the net-
work entropy subject to an allowable maximum num-
ber of sensors (of a specified sensing radius) or, equi-
valently, to maximize the entropy while minimizing 
the number of sensors used. 
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For example, in the sample arc shown in Figure 
1(A) with length greater than the sum of the sensing 
radii, suppose we denote a sensed node by a filled 
circle and a node without a sensor as an empty circle, 
then based on the above definition of entropy the total 
entropy produced by the shown arc configuration can 
be computed as 

( ) ( )min 2 ; min 2 ; 2ln 2 ln .
x L x L xx

L L L
 − × = − ×  
 

 

In the case of an arc length shorter than the sum of the 
sensing radii of the two nodal sensors (Figure 1(B)) 
the total pipe entropy is taken as  

( ) ( )min 2 ; min 2 ;
ln ln 0.

x L x L LL
L L L

 − × = − × = 
 

 

 

 
 

Figure 1. Proposed entropy-based sensor placement method: 
Generic cases of arc length (A) smaller and (B) greater than the 
sensing radii of sensors at the end-nodes.  

 
Furthermore, for pipes whose length is smaller than 

the sum of the sensing radii of two nodal sensors (one 
at each pipe end), the entropy approach results in zero 
entropy values. If only one sensor is used (at either of 
the nodes), the entropy value is higher than zero, thus 
the entropy-maximization approach gives higher pre-
ference to a single-node arrangement compared to the 
two-node arrangement. A numeric demonstration can 
be seen in Figure 2. Suppose, for a pipe of length 300 
meters, one sensor be used (at node ni) with an as-
sumed sensing radius of 200 meters, then the entropy  

 

 
 

Figure 2. Proposed entropy-based sensor placement method: 
Numeric example for the case of sensors at (A) one end-node 
and (B) both end-nodes, for an arc with length between 1× and 
2× the sensor’s sensing radius. 

for pipe (ni, nj) is computed to be 
200 200ln 0.270.
300 300

 − × = 
 

 

If two sensors are used (at nodes ni and nj) then the 
entropy is computed to be  

300 300ln 0.000.
300 300

 − × = 
 

 

It should be noted that the method shows preference for 
a single sensor compared to sensors at both end-nodes, 
and that the proposed entropy-maximization approach 
holds true in more complicated sensor arrangements 
as well[28]. 

6. Case Study of a Pipe Network 

Let us now consider a more complicated piping net-
work example, based on a real-life district metered 
area (DMA) network (Figure 3). The network consists 
of 448 nodes (possible sensor locations) and 633 pipes 
of varying length (in meters). The topology and nodal 
connectivity of the case study network are as shown in 
Figures 4 and 5, respectively. 

 

 
Figure 3. Case-study network (shown in black outline), based 
on real-life DMA from Limassol’s (Cyprus) UWDN. 
 

The network’s total entropy is the sum of all arc 
entropies as defined in the previous section, and can 
mathematically be expressed as 

 
,

1

tn
SYSTEM
T i j

i
H H

=
= =∑  (17) 
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Figure 4. Nodal connectivity of the DMA network considered. 

 

 
 

Figure 5. Topology of the DMA network considered, with pipe lengths shown on network arcs. 
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where, i, j are connected arc nodes and nt is the total 
number of nodes in the network. The equation essen-
tially loops over all arcs in the network (from left to 
right in this case), identifying the connected nodes and 
calculating the resulting arc entropy, before summing 
up the total network entropy. This total entropy is zero 
when no sensors are present in the network (no-sensor 
configuration case) and can be evaluated to be ALL

TH =  
0.214  when sensors are located at each and every 
node (all-sensor configuration case). The all-sensor 
case is in effect sensitive to only the arcs whose length 
is greater than the addition of the sensing radii for 
each arc. 

Let us now consider the entropy-maximization ap-
proach. The method starts with the nodal entropy val-
ues from the all-sensor configuration as the calcula-
tion base, and assumes that the entropy contributions 
to the total network entropy from the nodal sensors are 
not subject to the equivocation property. Upon rank-
ing the nodal entropies in descending order, the me-
thod selects the node that contributes the maximum to 
the network entropy and places a sensor at that node. 
For the case-study network, the node to first receive a 
sensor is node “329” (Figure 6), causing an increase in 
entropy by  

( ) ( )min 47;100 min 47;100
ln 0.000,

47 47
− × =  

( ) ( )min 128;100 min 128;100
ln 1.606

128 128
− × = −  

and 
( ) ( )min 173;100 min 173;100

ln 0.317
173 173

− × = −   

along arcs [328,329], [330,329] and [384,329] respec-
tively. 

Upon assigning a sensor at a node, the entropy val-
ues of the connecting nodes are adjusted, considering 
equivocation and the entropy-maximization approach 
(Equations 14 and 15). For example, having placed a 
sensor at node “329” and thus sensing pipes [329,328], 
[329,330] and [329,384], the entropy values of con-
nected nodes “328”, “330” and “384” need to be ad-
justed so that the equivocation property applies. Given 
that the total entropy of arcs [328,329], [330,329] and 
[384,329] when sensors are installed at both arc nodes is  

( ) ( )min 47;200 min 47;200
ln 0.000,

47 47
− × =  

( ) ( )min 128;200 min 128;200
ln 0.000

128 128
− × =  

and  
( ) ( )min 173;200 min 173;200

ln 0.000
173 173

− × =  

respectively, then the entropy adjustments on nodes 
“328”, “330” and “384” are 0.000, 1.606 and 0.317 
respectively. 

The revised nodal entropies are re-calculated and 
the node with the highest entropy is selected for sen-
sor placement. The process is repeated until the max-
imum available number of sensors is reached. If, in 
this case-study network, we assume that a constraint 
on the number of sensors (nt) is imposed of nt = 6, 
then the proposed entropy-maximization approach 
arrives at the sensor topology shown in Figure 7, with 
the total network entropy calculated at HT = 20.321. 

The process may continue until the entropy heuris-
tic places enough sensors in the WDN in study to 
cover it entirely. Solution of this problem is reached in 
short computational times (depending on the size of  
the network and the presumed sensing radius), espe-
cially if hydraulic parameters are not included in the 
analysis and the WDN is treated as static geometry of 
arcs and nodes. For the case study WDN, the number 
of sensors required for complete coverage is computed 
by the entropy heuristic to be 49. 

7. Considering Hydraulics 

As shown in Figure 7, the entropy-optimization heu-
ristic moves towards maximality, not when all nodes 
are used as sensor positions, but rather when sensors 
are positioned at selected nodal positions (not neces-
sarily at the boundaries of the network). However, as 
implemented above, the proposed method does not 
take into consideration the hydraulics in the network. 
Thus, it is more suitable to sensors which are hydrau-
lic-invariant, such as acoustic sensors. 

In the case of sensors which are directly affected by 
the hydraulics in the studied network (such as pressure 
or water flow sensors), one needs to also consider 
these hydraulic parameters in the entropy-maximiza-
tion method, without having to evaluate the hydraulic 
model at each iteration of the greedy-search heuristic. 
The proposed algorithm could then be adjusted so as 
to allow for a weighing or for a spatial clustering me-
chanism that would give priority to specific areas in 
the network and steer nodal selections towards these 
areas. 

Consider, for example, a terrain elevation map for 
the network area in study (as shown in Figure 8) and  
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Figure 6. Entropy-based sensor placement optimization (sensor 1). 
 

 
 

Figure 7. Entropy-based sensor placement optimization (first 6 sensors). 
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Figure 8. Network terrain elevation map. 
 

the assumption that the studied water distribution 
network is gravity-based. Thus, the hydraulics are 
greatly dependent on the elevations, with pipes at 
higher elevations operating at lower water pressures. 
Consider, further, that the network is divided in two 
elevation clusters, namely [22 m, 40 m) and [40 m, 60 
m], and the need to locate a sensor in the [22 m, 40 m) 
zone having adequately covered the [40 m, 60 m] zone 
with the first 6 sensors positioned in the network 
(Figure 8). 

The greedy-search entropy-maximization heuristic 
would now give precedence to nodes within the [22 m, 
40 m) zone, identifying nodes “57” and “511” as the 
next ones to receive a sensor and bypassing three oth-
er nodes in the [40 m, 60 m] zone which were next in 
line to receive a sensor. The resulting entropy-based 
sensor placement configuration is as shown in Figure 9, 
with the latter two sensors shown in different color. 

Even though the aforementioned process is static in 
nature and thus a rough approximation to the inclusion 
of water pressures in the analysis, a similar metho-
dology would be employed in the presence of a hy-
draulic model forecasting nodal pressures based on 
consumer demand (and not gravity). An initial hy-
draulic estimation of the pressures would facilitate the 
creation of a pressure map for the network which 
would then be used to spatially identify the pressure 
clusters in the network. These pressure zones would 

then be used as a weighing mechanism for steering the 
location of pressure sensors in each of the areas of 
interest. 

8. Conclusion 

The work presented herein discusses sensor placement 
optimization for water distribution networks, propos-
ing a greedy-search heuristic based on entropy and its 
subadditivity, maximality and equivocation properties. 
The proposed method formulates the sensor placement 
optimization problem as an entropy-maximization 
problem, with entropy defined in terms of the ratio of 
a sensor’s sensing distance over the length of the pipe 
being monitored, and its sum over the total network 
length maximized. The heuristic provides for near- 
optimal solutions to the sensor optimization problem 
in water distribution networks, with absolute optimal-
ity not necessarily sought or being attainable espe-
cially under dynamic hydraulic operations. 

The proposed approach, which is applicable to lon-
gitudinal rather than spatial sensing (thus to devices 
such as acoustic, pressure, or flow sensors acting on 
pipe segments), can be readily applied to network to-
pologies of any size and without a prior knowledge of 
their hydraulic parameters, and can be enhanced by 
introducing into the analysis greedy-search parameters 
such as network elevation data. Further, the method 
does not yield solutions with sensor locations as far as  
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Figure 9. Entropy-based sensor placement optimization (all 8 sensors). 
 

possible from each other, or with sensors placed along 
the borders of the area of interest, as Ramakrishnan et 
al.[13] noted in their work about entropy and mutual 
information. 

Future work on sensor placement and on the pro-
posed entropy-maximization heuristic entails the fol-
lowing actions: 

• Expand the method to incorporate a network’s 
operating parameters further to its topology. This 
will allow the algorithm to consider real-time 
operating pressure and flow data, as well as digi-
tal elevation models to better optimize sensor lo-
cations. 

• Use sensor placement optimization to minimize 
the time to detect water loss or contamination in-
cidents in the piping network. 

• Utilize the optimized sensor location to increase 
the network’s reliability against catastrophic 
events. 
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